Chapter 1

Matrix Lie Groups

Problem 1

Let [,]n,k[ \cdot , \cdot ]_{n,k} be the symmetric bilinear form on Rn+k\mathbb{R}^{n+k} defined in (1.5). Let gg be the (n+k)×(n+k)(n + k) \times (n + k) diagonal matrix with the first nn diagonal entries equal to one and the last kk diagonal entries equal to minus one:

g=(In00Ik).g = \begin{pmatrix} I_n & 0 \\ 0 & -I_k \end{pmatrix}.

Show that for all x,yRn+kx, y \in \mathbb{R}^{n+k},

[x,y]n,k=x,gy.[ x, y ]_{n,k} = \langle x, g y \rangle.

Show that a (n+k)×(n+k)(n + k) \times (n + k) real matrix AA belongs to O(n;k)O(n; k) if and only if

gATg=A1.g A^T g = A^{-1}.

\\

Matrix Lie Groups