Exercise 1.1
(i) Show that [ v , 0 ] = 0 = [ 0 , v ] [v, 0] = 0 = [0, v] [ v , 0 ] = 0 = [ 0 , v ] for all v ∈ L v \in L v ∈ L
Solution
Since the Lie bracket is bilinear, we have
[ v , 0 ] = [ v , 0 + 0 ] = [ v , 0 ] + [ v , 0 ] [v, 0] = [v, 0 + 0] = [v, 0] + [v, 0] [ v , 0 ] = [ v , 0 + 0 ] = [ v , 0 ] + [ v , 0 ]
and
[ 0 , v ] = [ 0 + 0 , v ] = [ 0 , v ] + [ 0 , v ] [0, v] = [0 + 0, v] = [0, v] + [0, v] [ 0 , v ] = [ 0 + 0 , v ] = [ 0 , v ] + [ 0 , v ]
Subtracting [ v , 0 ] [v, 0] [ v , 0 ] from the first equation and [ 0 , v ] [0, v] [ 0 , v ] from the second gives the desired result. □ \square □
(ii) Suppose that x , y ∈ L x, y \in L x , y ∈ L satisfy [ x , y ] ≠ 0 [x, y] \neq 0 [ x , y ] = 0 . Show that x x x and y y y are linearly independent over F F F .
Solution
The contrapositive of the statement is to assume that x x x and y y y are linearly dependent over F and prove that [ x , y ] = 0 [x, y] = 0 [ x , y ] = 0 . We shall prove the contrapositive. So take y = k x y=kx y = k x for some k ∈ F k \in F k ∈ F . Then
[ x , y ] = [ x , k x ] = k [ x , x ] = 0 [x, y] = [x, kx] = k [x, x] = 0 [ x , y ] = [ x , k x ] = k [ x , x ] = 0
Since [ x , x ] = 0 [x, x] = 0 [ x , x ] = 0 by property (L1). □ \square □
Exercise 1.2
Let F = R F = \mathbf{R} F = R . The vector product ( x , y ) ↦ x ∧ y (x, y) \mapsto x \wedge y ( x , y ) ↦ x ∧ y defines the structure of a Lie algebra on R 3 \mathbf{R}^3 R 3 . We denote this Lie algebra by R ∧ 3 \mathbf{R}^3_\wedge R ∧ 3 . Explicitly, if x = ( x 1 , x 2 , x 3 ) x=(x_1, x_2, x_3) x = ( x 1 , x 2 , x 3 ) and y = ( y 1 , y 2 , y 3 ) y=(y_1, y_2, y_3) y = ( y 1 , y 2 , y 3 ) then
x ∧ y = ( x 2 y 3 − x 3 y 2 , x 3 y 1 − x 1 y 3 , x 1 y 2 − x 2 y 1 ) x \wedge y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) x ∧ y = ( x 2 y 3 − x 3 y 2 , x 3 y 1 − x 1 y 3 , x 1 y 2 − x 2 y 1 )
Convince yourself that ∧ \wedge ∧ is bilinear. Then check that the Jacobi identity holds. Hint : If x ⋅ y x \cdot y x ⋅ y denotes the dot product of the vectors x , y ∈ R 3 x, y \in \mathbf{R}^3 x , y ∈ R 3 , then
x ∧ ( y ∧ z ) = ( x ⋅ z ) y − ( x ⋅ y ) z for all x , y , z ∈ R 3 x \wedge (y \wedge z) = (x \cdot z)y - (x \cdot y)z \quad \text{for all } x,y, z \in \mathbf{R}^3 x ∧ ( y ∧ z ) = ( x ⋅ z ) y − ( x ⋅ y ) z for all x , y , z ∈ R 3
Solution
Let a , b ∈ R a, b \in \mathbb{R} a , b ∈ R and x , y , z ∈ R 3 x, y, z \in \mathbf{R}^3 x , y , z ∈ R 3 . To show that ∧ \wedge ∧ is bilinear we must show that
( a x + b y ) ∧ z = a ( x ∧ z ) + b ( y ∧ z ) , z ∧ ( a x + b y ) = a ( z ∧ x ) + b ( z ∧ y ) , (a x + b y) \wedge z = a (x \wedge z) + b (y \wedge z), \\
z \wedge (a x + b y) = a ( z \wedge x) + b(z \wedge y), ( a x + b y ) ∧ z = a ( x ∧ z ) + b ( y ∧ z ) , z ∧ ( a x + b y ) = a ( z ∧ x ) + b ( z ∧ y ) ,
So
( a x + b y ) ∧ z = ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 ) ∧ ( z 1 , z 2 , z 3 ) = ( ( a x 2 + b y 2 ) z 3 − ( a x 3 + b y 3 ) z 2 , ( a x 3 + b y 3 ) z 1 − ( a x 1 + b y 1 ) z 3 , ( a x 1 + b y 1 ) z 2 − ( a x 2 + b y 2 ) z 1 ) = ( a ( x 2 z 3 − x 3 z 2 ) + b ( y 2 z 3 − y 3 z 2 ) , a ( x 3 z 1 − x 1 z 3 ) + b ( y 3 z 1 − y 1 z 3 ) , a ( x 1 z 2 − x 2 z 1 ) + b ( y 1 z 2 − y 2 z 1 ) ) = a ( x 2 z 3 − x 3 z 2 , x 3 z 1 − x 1 z 3 , x 1 z 2 − x 2 z 1 ) + b ( y 2 z 3 − y 3 z 2 , y 3 z 1 − y 1 z 3 , y 1 z 2 − y 2 z 1 ) = a ( x ∧ z ) + b ( y ∧ z ) \begin{aligned}
(a x + b y) \wedge z &= (ax_1 + by_1, ax_2 + by_2, ax_3 + by_3) \wedge (z_1, z_2, z_3) \\
&= \big((ax_2 + by_2)z_3 - (ax_3 + by_3)z_2, \\
&\quad (ax_3 + by_3)z_1 - (ax_1 + by_1)z_3, \\
&\quad (ax_1 + by_1)z_2 - (ax_2 + by_2)z_1\big) \\
&= \big(a(x_2z_3 - x_3z_2) + b(y_2z_3 - y_3z_2), \\
&\quad a(x_3z_1 - x_1z_3) + b(y_3z_1 - y_1z_3), \\
&\quad a(x_1z_2 - x_2z_1) + b(y_1z_2 - y_2z_1)\big) \\
&= a(x_2z_3 - x_3z_2, x_3z_1 - x_1z_3, x_1z_2 - x_2z_1) \\
&\quad + b(y_2z_3 - y_3z_2, y_3z_1 - y_1z_3, y_1z_2 - y_2z_1) \\
&= a (x \wedge z) + b (y \wedge z)
\end{aligned} ( a x + b y ) ∧ z = ( a x 1 + b y 1 , a x 2 + b y 2 , a x 3 + b y 3 ) ∧ ( z 1 , z 2 , z 3 ) = ( ( a x 2 + b y 2 ) z 3 − ( a x 3 + b y 3 ) z 2 , ( a x 3 + b y 3 ) z 1 − ( a x 1 + b y 1 ) z 3 , ( a x 1 + b y 1 ) z 2 − ( a x 2 + b y 2 ) z 1 ) = ( a ( x 2 z 3 − x 3 z 2 ) + b ( y 2 z 3 − y 3 z 2 ) , a ( x 3 z 1 − x 1 z 3 ) + b ( y 3 z 1 − y 1 z 3 ) , a ( x 1 z 2 − x 2 z 1 ) + b ( y 1 z 2 − y 2 z 1 ) ) = a ( x 2 z 3 − x 3 z 2 , x 3 z 1 − x 1 z 3 , x 1 z 2 − x 2 z 1 ) + b ( y 2 z 3 − y 3 z 2 , y 3 z 1 − y 1 z 3 , y 1 z 2 − y 2 z 1 ) = a ( x ∧ z ) + b ( y ∧ z )
To show that z ∧ ( a x + b y ) = a ( z ∧ x ) + b ( z ∧ y ) z \wedge (a x + b y) = a ( z \wedge x) + b(z \wedge y) z ∧ ( a x + b y ) = a ( z ∧ x ) + b ( z ∧ y ) we could repeat the above but reversed, but there is a shortcut. Calculate that
y ∧ x = ( y 2 x 3 − y 3 x 2 , y 3 x 1 − y 1 x 3 , y 1 x 2 − y 2 x 1 ) = − ( y 3 x 2 − y 2 x 3 , y 1 x 3 − y 3 x 1 , y 2 x 1 − y 1 x 2 ) = − ( x 2 y 3 − x 3 y 2 , x 3 y 1 − x 1 y 3 , x 1 y 2 − x 2 y 1 ) = − x ∧ y \begin{aligned}
y \wedge x &= (y_2x_3 - y_3x_2, y_3x_1 - y_1x_3, y_1x_2 - y_2x_1) \\
&= - (y_3x_2 - y_2x_3, y_1x_3 - y_3x_1, y_2x_1 - y_1x_2) \\
&= - (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \\
&= - x \wedge y
\end{aligned} y ∧ x = ( y 2 x 3 − y 3 x 2 , y 3 x 1 − y 1 x 3 , y 1 x 2 − y 2 x 1 ) = − ( y 3 x 2 − y 2 x 3 , y 1 x 3 − y 3 x 1 , y 2 x 1 − y 1 x 2 ) = − ( x 2 y 3 − x 3 y 2 , x 3 y 1 − x 1 y 3 , x 1 y 2 − x 2 y 1 ) = − x ∧ y
So
z ∧ ( a x + b y ) = − ( ( a x + b y ) ∧ z ) = − ( a ( x ∧ z ) + b ( y ∧ z ) ) = a ( z ∧ x ) + b ( z ∧ y ) z \wedge (a x + b y) = - ((a x + b y) \wedge z) = -(a (x \wedge z) + b (y \wedge z)) = a(z \wedge x) + b(z \wedge y) z ∧ ( a x + b y ) = − (( a x + b y ) ∧ z ) = − ( a ( x ∧ z ) + b ( y ∧ z )) = a ( z ∧ x ) + b ( z ∧ y )
Finally we must show that the Jacobi identity holds for ∧ \wedge ∧ . This is easy using the given identity
x ∧ ( y ∧ z ) + y ∧ ( z ∧ x ) + z ∧ ( x ∧ y ) = ( ( x ⋅ z ) y − ( x ⋅ y ) z ) + ( ( y ⋅ x ) z − ( y ⋅ z ) x ) + ( ( z ⋅ y ) x − ( z ⋅ x ) y ) = 0. □ x \wedge (y \wedge z) + y \wedge (z \wedge x) + z \wedge (x \wedge y) \\= ((x \cdot z)y - (x \cdot y)z) + ((y \cdot x)z - (y \cdot z)x) + ((z \cdot y)x - (z \cdot x)y) = 0. \quad \square x ∧ ( y ∧ z ) + y ∧ ( z ∧ x ) + z ∧ ( x ∧ y ) = (( x ⋅ z ) y − ( x ⋅ y ) z ) + (( y ⋅ x ) z − ( y ⋅ z ) x ) + (( z ⋅ y ) x − ( z ⋅ x ) y ) = 0. □
Exercise 1.3
Suppose that V V V is a finite-dimensional vector space over F F F . Write g l ( V ) \mathrm{gl}(V) gl ( V ) for the set of all linear maps from V V V to V V V . This is again a vector space over F F F , and it becomes a Lie algebra, known as the general linear algebra , if we define the Lie bracket [ − , − ] [-, -] [ − , − ] by
[ x , y ] ≔ x ∘ y − y ∘ x for x , y ∈ g l ( V ) , [x, y] \coloneqq x \circ y- y \circ x \quad \text{for } x, y \in \mathrm{gl}(V), [ x , y ] : = x ∘ y − y ∘ x for x , y ∈ gl ( V ) ,
where ∘ \circ ∘ denotes the composition of maps. Check that the Jacobi identity holds.
Solution
Calculate that
= [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = x ∘ [ y , z ] − [ y , z ] ∘ x + y ∘ [ z , x ] − [ z , x ] ∘ y + z ∘ [ x , y ] − [ x , y ] ∘ z = x ∘ ( y ∘ z − z ∘ y ) − ( y ∘ z − z ∘ y ) ∘ x + y ∘ ( z ∘ x − x ∘ z ) − ( z ∘ x − x ∘ z ) ∘ y + z ∘ ( x ∘ y − y ∘ x ) − ( x ∘ y − y ∘ x ) ∘ z . = x ∘ y ∘ z − x ∘ z ∘ y − y ∘ z ∘ x + z ∘ y ∘ x + y ∘ z ∘ x − y ∘ x ∘ z − z ∘ x ∘ y + x ∘ z ∘ y + z ∘ x ∘ y − z ∘ y ∘ x − x ∘ y ∘ z + y ∘ x ∘ z = 0 \begin{aligned}
&\phantom{=}[x, [y, z]] + [y, [z, x]] + [z,[x,y]] \\
&= x \circ [y, z] - [y, z ]\circ x \\
&\quad + y \circ [z, x] - [z, x ] \circ y \\
&\quad + z \circ [x, y] - [x, y] \circ z \\
&= x \circ (y \circ z - z \circ y) - (y \circ z - z \circ y) \circ x \\
&\quad + y \circ (z \circ x - x \circ z) - (z \circ x - x \circ z) \circ y \\
&\quad + z \circ (x \circ y - y \circ x) - (x \circ y - y \circ x) \circ z. \\
&= x \circ y \circ z - x \circ z \circ y - y \circ z \circ x + z \circ y \circ x \\
&\quad + y \circ z \circ x - y \circ x \circ z - z \circ x \circ y + x \circ z \circ y \\
&\quad + z \circ x \circ y - z \circ y \circ x - x \circ y \circ z + y \circ x \circ z \\
&= 0
\end{aligned} = [ x , [ y , z ]] + [ y , [ z , x ]] + [ z , [ x , y ]] = x ∘ [ y , z ] − [ y , z ] ∘ x + y ∘ [ z , x ] − [ z , x ] ∘ y + z ∘ [ x , y ] − [ x , y ] ∘ z = x ∘ ( y ∘ z − z ∘ y ) − ( y ∘ z − z ∘ y ) ∘ x + y ∘ ( z ∘ x − x ∘ z ) − ( z ∘ x − x ∘ z ) ∘ y + z ∘ ( x ∘ y − y ∘ x ) − ( x ∘ y − y ∘ x ) ∘ z . = x ∘ y ∘ z − x ∘ z ∘ y − y ∘ z ∘ x + z ∘ y ∘ x + y ∘ z ∘ x − y ∘ x ∘ z − z ∘ x ∘ y + x ∘ z ∘ y + z ∘ x ∘ y − z ∘ y ∘ x − x ∘ y ∘ z + y ∘ x ∘ z = 0
It seems that all the terms cancelled out nicely! I see why this exercise is famous as one that every mathematician should do at least once in their life 😃 □ \square □
Unnamed Exercise
Write g l ( n , F ) \mathrm{gl}(n, F) gl ( n , F ) for the vector space of all n × n n \times n n × n matrices over F F F with the Lie bracket defined by
[ x , y ] ≔ x y − y x [x, y] \coloneqq xy - yx [ x , y ] : = x y − y x
Where x y xy x y is the usual product of the matrices x x x and y y y .
As a vector space, g l ( n , F ) \mathrm{gl}(n, F) gl ( n , F ) has a basis consisting of the matrix units e i j e_{ij} e ij for 1 ≤ i , j ≤ n 1 \leq i, j \leq n 1 ≤ i , j ≤ n . Here e i j e_{ij} e ij is the n × n n \times n n × n matrix which has 1 in the i j ij ij -th position and all other entries are 0. We leave it as an exercise to check that
[ e i j , e k l ] = δ j k e i l − δ i l e k j [e_{ij}, e_{kl}] = \delta_{jk}e_{il} - \delta_{il}e_{kj} [ e ij , e k l ] = δ jk e i l − δ i l e kj
where δ \delta δ is the Kronecker delta, defined by δ i j = 1 \delta_{ij} = 1 δ ij = 1 if i = j i = j i = j and δ i j = 0 \delta_{ij} = 0 δ ij = 0 otherwise.
Solution
[ e i j , e k l ] = e i j e k l − e k l e i j [e_{ij}, e_{kl}] = e_{ij}e_{kl} - e_{kl}e_{ij} [ e ij , e k l ] = e ij e k l − e k l e ij
Using the formula for matrix multiplication at some index 1 ≤ a , b ≤ n 1 \leq a, b \leq n 1 ≤ a , b ≤ n we get
( e i j e k l ) a b = ∑ x = 0 n ( e i j ) a x ⋅ ( e k l ) x b (e_{ij}e_{kl})_{ab} = \sum_{x = 0}^{n} (e_{ij})_{ax}\cdot(e_{kl})_{xb} ( e ij e k l ) ab = x = 0 ∑ n ( e ij ) a x ⋅ ( e k l ) x b
Whenever x ≠ j x \neq j x = j by definition we have ( e i j ) a x = 0 (e_{ij})_{ax} = 0 ( e ij ) a x = 0 so this reduces to
( e i j e k l ) a b = ( e i j ) a j ⋅ ( e k l ) j b = δ a i ⋅ δ k j ⋅ δ l b (e_{ij}e_{kl})_{ab} = (e_{ij})_{aj}\cdot(e_{kl})_{jb} = \delta_{ai} \cdot \delta_{kj} \cdot \delta_{lb} ( e ij e k l ) ab = ( e ij ) aj ⋅ ( e k l ) jb = δ ai ⋅ δ kj ⋅ δ l b
Hence we have
e i j e k l = δ j k ⋅ e i l e_{ij}e_{kl} = \delta_{jk} \cdot e_{il} e ij e k l = δ jk ⋅ e i l
As by definition ( e i l ) a b = δ a i ⋅ δ l b (e_{il})_{ab} = \delta_{ai} \cdot \delta_{lb} ( e i l ) ab = δ ai ⋅ δ l b . Rearranging symbols gives e k l e i j = δ l i e k j e_{kl}e_{ij} = \delta_{li}e_{kj} e k l e ij = δ l i e kj , combining the results finishes the proof. □ \square □
Exercise 1.4
Check the following assertions:
Let b ( n , F ) \mathrm{b}(n,F) b ( n , F ) be the upper triangular matrices in g l ( n , F ) \mathrm{gl}(n,F) gl ( n , F ) . (A matrix x x x is said to be upper triangular if x i j = 0 x_{ij}=0 x ij = 0 whenever i > j i > j i > j .) This is a Lie algebra with the same Lie bracket as g l ( n , F ) \mathrm{gl}(n,F) gl ( n , F ) .
Similarly, let n ( n , F ) \mathrm{n}(n,F) n ( n , F ) be the strictly upper triangular matrices in g l ( n , F ) \mathrm{gl}(n,F) gl ( n , F ) . (a matrix x x x is said to be strictly upper triangular if x i j = 0 x_{ij}=0 x ij = 0 whenever i ≥ j i \geq j i ≥ j ). Again this is a Lie algebra with the same Lie bracket as g l ( n , F ) \mathrm{gl}(n,F) gl ( n , F ) .
Solution
Let x , y x, y x , y be upper-triangular matrices. Recall from linear algebra that upper triangular matrices and strictly upper triangular matrices are subspaces of the vector space formed by all square matrices. Therefore, ( x y − y x ) (xy - yx) ( x y − y x ) forms a Lie Algebra over b ( n , F ) \mathrm{b}(n,F) b ( n , F ) and n ( n , F ) \mathrm{n}(n,F) n ( n , F ) , because the required properties of being a bilinear map [ : ] : L → L [:]:L \to L [ : ] : L → L satisfying the properties
TODO You need to show that when you multiply two (strictly) upper triangular matrices you get a (strictly) upper triangular matrix!
( L 1 ) [ x , x ] = 0 for all x ∈ L , (L1) \tag{L1} \phantom{(L1)} \quad [x,x]=0 \quad\text{for all } x \in L, ( L 1 ) [ x , x ] = 0 for all x ∈ L , ( L1 )
( L 2 ) [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 for all x , y , z ∈ L . (L2) \tag{L2} \phantom{(L2)} \quad [x,[y,z]] + [y,[z,x]] + [z,[x,y]]=0 \quad \text{for all } x,y,z \in L. ( L 2 ) [ x , [ y , z ]] + [ y , [ z , x ]] + [ z , [ x , y ]] = 0 for all x , y , z ∈ L . ( L2 )
are inherited from g l ( n , F ) \mathrm{gl}(n,F) gl ( n , F ) . □ \quad \square □
Exercise 1.5
Find Z ( L ) Z(L) Z ( L ) when L = s l ( 2 , F ) L = \mathrm{sl}(2,F) L = sl ( 2 , F ) . You should find that the answer depends on the characteristic of F F F .
Solution
First let's just plug in
Z ( s l ( 2 , F ) ) = { x ∈ s l ( 2 , F ) : x y − y x = 0 for all y ∈ s l ( 2 , F ) } Z(\mathrm{sl}(2,F)) = \{ x \in \mathrm{sl}(2,F): xy - yx = 0 \text{ for all } y \in \mathrm{sl}(2,F) \} Z ( sl ( 2 , F )) = { x ∈ sl ( 2 , F ) : x y − y x = 0 for all y ∈ sl ( 2 , F )}
Now since x , y ∈ s l ( 2 , F ) x,y \in \mathrm{sl}(2,F) x , y ∈ sl ( 2 , F ) we know that their trace is zero
x = ( x 11 x 12 x 21 − x 11 ) , y = ( y 11 y 12 y 21 − y 11 ) x y = ( x 11 x 12 x 21 − x 11 ) ⋅ ( y 11 y 12 y 21 − y 11 ) = ( x 11 y 11 + x 12 y 21 x 11 y 12 − x 12 y 11 x 21 y 11 − x 11 y 21 x 21 y 12 + x 11 y 11 ) y x = ( y 11 y 12 y 21 − y 11 ) ⋅ ( x 11 x 12 x 21 − x 11 ) = ( y 11 x 11 + y 12 x 21 y 11 x 12 − y 12 x 11 y 21 x 11 − y 11 x 21 y 21 x 12 + y 11 x 11 ) x y − y x = ( x 12 y 21 − y 12 x 21 2 x 11 y 12 − 2 x 12 y 11 2 x 21 y 11 − 2 x 11 y 21 x 21 y 12 − y 21 x 12 ) x = \begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & -x_{11}
\end{pmatrix}, y = \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} \\[4pt]
xy = \begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & -x_{11}
\end{pmatrix} \cdot \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} = \begin{pmatrix}
x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} - x_{12}y_{11} \\
x_{21}y_{11} - x_{11}y_{21} & x_{21}y_{12} + x_{11}y_{11}
\end{pmatrix} \\[4pt]
yx = \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} \cdot \begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & -x_{11}
\end{pmatrix} = \begin{pmatrix}
y_{11}x_{11} + y_{12}x_{21} & y_{11}x_{12} - y_{12}x_{11} \\
y_{21}x_{11} - y_{11}x_{21} & y_{21}x_{12} + y_{11}x_{11}
\end{pmatrix} \\[4pt]
xy - yx = \begin{pmatrix}
x_{12}y_{21} - y_{12}x_{21} & 2x_{11}y_{12} - 2x_{12}y_{11} \\
2x_{21}y_{11} - 2x_{11}y_{21} & x_{21}y_{12} - y_{21}x_{12}
\end{pmatrix} x = ( x 11 x 21 x 12 − x 11 ) , y = ( y 11 y 21 y 12 − y 11 ) x y = ( x 11 x 21 x 12 − x 11 ) ⋅ ( y 11 y 21 y 12 − y 11 ) = ( x 11 y 11 + x 12 y 21 x 21 y 11 − x 11 y 21 x 11 y 12 − x 12 y 11 x 21 y 12 + x 11 y 11 ) y x = ( y 11 y 21 y 12 − y 11 ) ⋅ ( x 11 x 21 x 12 − x 11 ) = ( y 11 x 11 + y 12 x 21 y 21 x 11 − y 11 x 21 y 11 x 12 − y 12 x 11 y 21 x 12 + y 11 x 11 ) x y − y x = ( x 12 y 21 − y 12 x 21 2 x 21 y 11 − 2 x 11 y 21 2 x 11 y 12 − 2 x 12 y 11 x 21 y 12 − y 21 x 12 )
So when is x y − y x = 0 xy - yx = 0 x y − y x = 0 ? Can we come up with some generators for this set? Keep in mind we are only picking for x x x , y y y can be anything.
x 12 y 21 = y 12 x 21 2 x 11 y 12 = 2 x 12 y 11 2 x 21 y 21 = 2 x 11 y 21 x 21 y 12 = y 21 x 12 x_{12}y_{21} = y_{12}x_{21} \\
2x_{11}y_{12} = 2x_{12}y_{11} \\
2x_{21}y_{21} = 2x_{11}y_{21} \\
x_{21}y_{12} = y_{21}x_{12} x 12 y 21 = y 12 x 21 2 x 11 y 12 = 2 x 12 y 11 2 x 21 y 21 = 2 x 11 y 21 x 21 y 12 = y 21 x 12
Let's look at some examples. Let F be the field of two elements. Then the only requirements for the center become
x 12 y 21 = y 12 x 21 x 21 y 12 = y 21 x 12 x_{12}y_{21} = y_{12}x_{21} \\
x_{21}y_{12} = y_{21}x_{12} x 12 y 21 = y 12 x 21 x 21 y 12 = y 21 x 12
So consider the matrix
x = ( 1 0 0 − 1 ) x = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} x = ( 1 0 0 − 1 )
This matrix solves the equations above, to show it is in the center explicitly we can show
( 1 0 0 − 1 ) ⋅ ( y 11 y 12 y 21 − y 11 ) = ( y 11 y 12 − y 21 y 11 ) ( y 11 y 12 y 21 − y 11 ) ⋅ ( 1 0 0 − 1 ) = ( y 11 − y 12 − y 21 y 11 ) x y − y x = ( 1 0 0 − 1 ) ⋅ ( y 11 y 12 y 21 − y 11 ) − ( y 11 y 12 y 21 − y 11 ) ⋅ ( 1 0 0 − 1 ) = ( y 11 y 12 − y 21 y 11 ) − ( y 11 − y 12 − y 21 y 11 ) = ( 0 y 12 + y 12 0 0 ) \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} = \begin{pmatrix}
y_{11} & y_{12} \\
-y_{21} & y_{11}
\end{pmatrix} \\[4pt]
\begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} = \begin{pmatrix}
y_{11} & -y_{12} \\
-y_{21} & y_{11}
\end{pmatrix} \\[4pt]
xy - yx = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \cdot \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} - \begin{pmatrix}
y_{11} & y_{12} \\
y_{21} & -y_{11}
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}\\[4pt]
= \begin{pmatrix}
y_{11} & y_{12} \\
-y_{21} & y_{11}
\end{pmatrix} - \begin{pmatrix}
y_{11} & -y_{12} \\
-y_{21} & y_{11}
\end{pmatrix} = \begin{pmatrix}
0 & y_{12} + y_{12} \\
0 & 0
\end{pmatrix} ( 1 0 0 − 1 ) ⋅ ( y 11 y 21 y 12 − y 11 ) = ( y 11 − y 21 y 12 y 11 ) ( y 11 y 21 y 12 − y 11 ) ⋅ ( 1 0 0 − 1 ) = ( y 11 − y 21 − y 12 y 11 ) x y − y x = ( 1 0 0 − 1 ) ⋅ ( y 11 y 21 y 12 − y 11 ) − ( y 11 y 21 y 12 − y 11 ) ⋅ ( 1 0 0 − 1 ) = ( y 11 − y 21 y 12 y 11 ) − ( y 11 − y 21 − y 12 y 11 ) = ( 0 0 y 12 + y 12 0 )
Since for all λ ∈ F 2 \lambda \in F_2 λ ∈ F 2 we have λ + λ = 0 \lambda + \lambda = 0 λ + λ = 0 , in F 2 F_2 F 2 we clearly have x y − y x = 0 xy - yx = 0 x y − y x = 0 , so x ∈ Z ( s l ( 2 , F 2 ) ) x \in Z(\mathrm{sl}(2, F_2)) x ∈ Z ( sl ( 2 , F 2 )) . Of course, we always have 0 ∈ Z ( s l ( 2 , F ) ) 0 \in Z(\mathrm{sl}(2,F)) 0 ∈ Z ( sl ( 2 , F )) for all fields F F F , and when the characteristic of F F F is not 2, this is the only element. □ \quad \square □
Exercise 1.6
Show that if φ : L 1 → L 2 \varphi : L_1 \to L_2 φ : L 1 → L 2 is a homomorphism, then the kernel of φ \varphi φ , ker φ \ker \varphi ker φ , is an ideal of L 1 L_1 L 1 , and the image of φ \varphi φ , im φ \text{im} \varphi im φ , is a Lie subalgebra of L 2 L_2 L 2 .
Solution
First let's show that ker φ \ker \varphi ker φ is an ideal of L 1 L_1 L 1 . The definition of a kernel gives us
ker φ = { x ∈ L 1 : φ ( x ) = 0 } . \ker \varphi = \{x \in L_1: \varphi(x)=0 \}. ker φ = { x ∈ L 1 : φ ( x ) = 0 } .
We wish to show that ker φ \ker \varphi ker φ is an ideal of L 1 L_1 L 1 .
First we must show that it is a subspace of L 1 L_1 L 1 . This amounts to showing that ker φ \ker \varphi ker φ contains the zero vector, and is closed under both vector addition and scalar multiplication. 0 ∈ ker φ ⟺ φ ( 0 ) = 0 0 \in \ker \varphi \iff \varphi(0) = 0 0 ∈ ker φ ⟺ φ ( 0 ) = 0 , the latter following from φ \varphi φ being a homomorphism, so ker ϕ \ker \phi ker ϕ contains the zero vector. Let x , y ∈ ker φ x, y \in \ker \varphi x , y ∈ ker φ and c ∈ F c \in F c ∈ F (where F F F is the common field of scalars shared by L 1 L_1 L 1 and L 2 L_2 L 2 ). Then φ ( x + y ) = φ ( x ) + φ ( y ) = 0 \varphi(x + y) = \varphi(x) + \varphi(y) = 0 φ ( x + y ) = φ ( x ) + φ ( y ) = 0 and φ ( c ⋅ x ) = c ⋅ φ ( x ) = 0 \varphi(c \cdot x) = c \cdot \varphi(x) = 0 φ ( c ⋅ x ) = c ⋅ φ ( x ) = 0 . We conclude that ker φ \ker \varphi ker φ is a subspace of L 1 L_1 L 1
Let x ∈ L 1 x \in L_1 x ∈ L 1 and y ∈ ker φ y \in \ker \varphi y ∈ ker φ . To show that ker φ \ker \varphi ker φ is an ideal of L 1 L_1 L 1 , we need to show that [ x , y ] ∈ ker φ [x, y] \in \ker \varphi [ x , y ] ∈ ker φ . Calculate that
φ ( [ x , y ] ) = [ φ ( x ) , φ ( y ) ] = [ φ ( x ) , 0 ] = 0 □ \varphi ([x,y]) = [\varphi(x), \varphi(y)] = [\varphi(x), 0] = 0 \quad \square φ ([ x , y ]) = [ φ ( x ) , φ ( y )] = [ φ ( x ) , 0 ] = 0 □
Next we show that im φ \text{im} \varphi im φ is a Lie subalgebra of L 2 L_2 L 2 . Recall that
im φ = { y ∈ L 2 : y = φ ( x ) , for some x ∈ L 1 } . \text{im} \varphi = \{ y \in L_2: y = \varphi(x), \text{ for some } x \in L_1 \}. im φ = { y ∈ L 2 : y = φ ( x ) , for some x ∈ L 1 } .
To prove that im φ \text{im} \varphi im φ is a Lie subalgebra of L 2 L_2 L 2 , we first need to show that im φ \text{im} \varphi im φ is a vector subspace of L 2 L_2 L 2 . Since φ ( 0 ) = 0 \varphi(0)=0 φ ( 0 ) = 0 , 0 ∈ im φ 0 \in \text{im} \varphi 0 ∈ im φ . If y 1 = φ ( x 1 ) , y 2 = φ ( x 2 ) , c ∈ F , x 1 , x 2 ∈ L 1 y_1 = \varphi(x_1), y_2 = \varphi(x_2), c \in F, x_1, x_2 \in L_1 y 1 = φ ( x 1 ) , y 2 = φ ( x 2 ) , c ∈ F , x 1 , x 2 ∈ L 1 , then y 1 + y 2 = φ ( x 1 ) + φ ( x 2 ) = φ ( x 1 + x 2 ) y_1 + y_2 = \varphi(x_1) + \varphi(x_2) = \varphi(x_1 + x_2) y 1 + y 2 = φ ( x 1 ) + φ ( x 2 ) = φ ( x 1 + x 2 ) and c y 1 = c φ ( x 1 ) = φ ( c x 1 ) cy_1 = c \varphi(x_1) = \varphi(cx_1) c y 1 = c φ ( x 1 ) = φ ( c x 1 ) , so im φ \text{im} \varphi im φ is closed under vector addition and scalar multiplication. We conclude that im φ \text{im} \varphi im φ is a vector subspace of L 2 L_2 L 2 .
To show that im φ \text{im} \varphi im φ is a Lie subalgebra of L 2 L_2 L 2 , it remains to show that
[ y 1 , y 2 ] ∈ im φ for all y 1 , y 2 ∈ im φ [y_1, y_2] \in \text{im} \varphi \qquad \text{for all } y_1,y_2 \in \text{im} \varphi [ y 1 , y 2 ] ∈ im φ for all y 1 , y 2 ∈ im φ
So let y 1 = φ ( x 1 ) , y 2 = φ ( x 2 ) y_1 = \varphi(x_1), y_2 = \varphi(x_2) y 1 = φ ( x 1 ) , y 2 = φ ( x 2 ) . Calculate that
[ y 1 , y 2 ] = [ φ ( x 1 ) , φ ( x 2 ) ] = φ ( [ x 1 , x 2 ] ) □ [y_1, y_2] = [\varphi(x_1), \varphi(x_2)] = \varphi([x_1, x_2]) \qquad \square [ y 1 , y 2 ] = [ φ ( x 1 ) , φ ( x 2 )] = φ ([ x 1 , x 2 ]) □
Exercise 1.7
Let L L L be a Lie algebra. Show that the Lie bracket is associative, that is, [ x , [ y , z ] ] = [ [ x , y ] , z ] [x, [y, z]] = [[x,y],z] [ x , [ y , z ]] = [[ x , y ] , z ] for all x , y , z ∈ L x, y, z \in L x , y , z ∈ L , if and only if for all a , b ∈ L a, b \in L a , b ∈ L the commutator [ a , b ] [a, b] [ a , b ] lies in Z ( L ) Z(L) Z ( L ) .
Solution
First note that
[ a , b ] ∈ Z ( L ) for all a , b ∈ L ⟺ [ [ a , b ] , c ] = 0 for all a , b , c ∈ L \quad [a,b] \in Z(L) \text{ for all } a,b \in L \iff [[a,b],c] = 0 \text{ for all } a,b,c \in L [ a , b ] ∈ Z ( L ) for all a , b ∈ L ⟺ [[ a , b ] , c ] = 0 for all a , b , c ∈ L
Then calculate that
[ [ a , b ] , c ] = 0 for all a , b , c ∈ L ⟹ [ x , [ y , z ] ] = [ [ x , y ] , z ] = 0 [[a,b],c] = 0 \text{ for all } a,b,c \in L \implies [x,[y,z]] = [[x,y],z] = 0 [[ a , b ] , c ] = 0 for all a , b , c ∈ L ⟹ [ x , [ y , z ]] = [[ x , y ] , z ] = 0
and that
[ x , [ y , z ] ] = [ [ x , y ] , z ] for all x , y , z ∈ L ⟹ [ [ x , y ] , z ] = [ x , [ y , z ] ] = − [ [ y , z ] , x ] = − [ y , [ z , x ] ] = [ [ z , x ] , y ] = [ z , [ x , y ] ] = − [ [ x , y ] , z ] ⟹ [ [ x , y ] , z ] = − [ [ x , y ] , z ] ⟹ 1 + 1 = 0 or [ [ x , y ] , z ] = 0 □ [x, [y, z]] = [[x,y],z] \text{ for all } x,y,z \in L \\
\implies [[x,y],z] = [x, [y,z]] = -[[y,z],x] = -[y, [z,x]] = [[z,x],y] = [z,[x,y]] = -[[x,y],z] \\
\implies [[x,y],z] = -[[x,y],z] \\
\implies 1 + 1 = 0 \text{ or } [[x,y],z] = 0 \quad \square [ x , [ y , z ]] = [[ x , y ] , z ] for all x , y , z ∈ L ⟹ [[ x , y ] , z ] = [ x , [ y , z ]] = − [[ y , z ] , x ] = − [ y , [ z , x ]] = [[ z , x ] , y ] = [ z , [ x , y ]] = − [[ x , y ] , z ] ⟹ [[ x , y ] , z ] = − [[ x , y ] , z ] ⟹ 1 + 1 = 0 or [[ x , y ] , z ] = 0 □
Exercise 1.8
Let D D D and E E E be derivations of an algebra A A A .
(i) Show that [ D , E ] = D ∘ E − E ∘ D [D,E] = D \circ E - E \circ D [ D , E ] = D ∘ E − E ∘ D is also a derivation.
Solution
Let a , b ∈ A a,b \in A a , b ∈ A , by the definition of a derivation we have
D ( a b ) = a D ( b ) + D ( a ) b E ( a b ) = a E ( b ) + E ( a ) b D(ab) = aD(b) + D(a)b \\
E(ab) = aE(b) + E(a)b D ( ab ) = a D ( b ) + D ( a ) b E ( ab ) = a E ( b ) + E ( a ) b
so
[ D , E ] ( a b ) = D ( E ( a b ) ) − E ( D ( a b ) ) = D ( a E ( b ) + E ( a ) b ) − E ( a D ( b ) + D ( a ) b ) = D ( a E ( b ) ) + D ( E ( a ) b ) − E ( a D ( b ) ) − E ( D ( a ) b ) [D, E](ab) = D(E(ab)) - E(D(ab)) = D(aE(b)+E(a)b) - E(aD(b) + D(a)b) \\
= D(aE(b)) + D(E(a)b) - E(aD(b)) - E(D(a)b) [ D , E ] ( ab ) = D ( E ( ab )) − E ( D ( ab )) = D ( a E ( b ) + E ( a ) b ) − E ( a D ( b ) + D ( a ) b ) = D ( a E ( b )) + D ( E ( a ) b ) − E ( a D ( b )) − E ( D ( a ) b )
We need to show that
[ D , E ] ( a b ) = a [ D , E ] ( b ) + [ D , E ] ( a ) b = a ( D ( E ( b ) ) − E ( D ( b ) ) ) + ( D ( E ( a ) ) − E ( D ( a ) ) ) b [D,E](ab) = a[D,E](b) + [D,E](a)b = a(D(E(b)) - E(D(b))) + (D(E(a))-E(D(a)))b [ D , E ] ( ab ) = a [ D , E ] ( b ) + [ D , E ] ( a ) b = a ( D ( E ( b )) − E ( D ( b ))) + ( D ( E ( a )) − E ( D ( a ))) b
The result follows from rearranging terms. □ \quad \square □
(ii) Show that D ∘ E D \circ E D ∘ E need not be a derivation.
Solution
By definition D ∘ E D \circ E D ∘ E being a derivation means that for all a , b ∈ A a, b \in A a , b ∈ A we have
( D ∘ E ) ( a b ) = a ( D ∘ E ) ( b ) + ( D ∘ E ) ( a ) b ⟺ D ( E ( a b ) ) = a D ( E ( b ) ) + D ( E ( a ) ) b ⟺ D ( a E ( b ) + E ( a ) b ) = a D ( E ( b ) ) + D ( E ( a ) ) b ⟺ D ( a E ( b ) ) + D ( E ( a ) b ) = a D ( E ( b ) ) + D ( E ( a ) ) b ⟺ a D ( E ( b ) ) + D ( a ) E ( b ) + E ( a ) D ( b ) + D ( E ( a ) ) b = a D ( E ( b ) ) + D ( E ( a ) ) b ⟺ D ( a ) E ( b ) + E ( a ) D ( b ) = 0 (D \circ E) (ab) = a(D \circ E)(b) + (D \circ E)(a)b \\
\iff D(E(ab)) = aD(E(b)) + D(E(a))b \\
\iff D(aE(b) + E(a)b) = aD(E(b)) + D(E(a))b \\
\iff D(aE(b)) + D(E(a)b) = aD(E(b)) + D(E(a))b \\
\iff aD(E(b)) + D(a)E(b) + E(a)D(b) + D(E(a))b = aD(E(b)) + D(E(a))b \\
\iff D(a)E(b) + E(a)D(b) = 0 ( D ∘ E ) ( ab ) = a ( D ∘ E ) ( b ) + ( D ∘ E ) ( a ) b ⟺ D ( E ( ab )) = a D ( E ( b )) + D ( E ( a )) b ⟺ D ( a E ( b ) + E ( a ) b ) = a D ( E ( b )) + D ( E ( a )) b ⟺ D ( a E ( b )) + D ( E ( a ) b ) = a D ( E ( b )) + D ( E ( a )) b ⟺ a D ( E ( b )) + D ( a ) E ( b ) + E ( a ) D ( b ) + D ( E ( a )) b = a D ( E ( b )) + D ( E ( a )) b ⟺ D ( a ) E ( b ) + E ( a ) D ( b ) = 0
Let D D D be ordinary differentiation in the associative algebra A = C ∞ R A=C^{\infty}\mathbf{R} A = C ∞ R of infinitely differentiable functions f , g : R → R f,g: \mathbf{R} \to \mathbf{R} f , g : R → R , where the product f g fg f g is given by pointwise multiplication: ( f g ) ( x ) = f ( x ) g ( x ) (fg)(x) = f(x)g(x) ( f g ) ( x ) = f ( x ) g ( x ) . Then D ∘ D D \circ D D ∘ D is a derivation if and only if for every a , b ∈ A a, b \in A a , b ∈ A ,
D ( a ) D ( b ) + D ( a ) D ( b ) = 0. D(a)D(b) + D(a)D(b) = 0. D ( a ) D ( b ) + D ( a ) D ( b ) = 0.
Take a , b a,b a , b to be the identity functions that is a ( x ) = x a(x) = x a ( x ) = x , b ( x ) = x b(x) = x b ( x ) = x for all x ∈ R x \in \mathbf{R} x ∈ R . Then
D ( a ) D ( b ) + D ( a ) D ( b ) = 1 ⋅ 1 + 1 ⋅ 1 = 2 ≠ 0. D(a)D(b) + D(a)D(b) = 1 \cdot 1 + 1 \cdot 1 = 2 \neq 0. D ( a ) D ( b ) + D ( a ) D ( b ) = 1 ⋅ 1 + 1 ⋅ 1 = 2 = 0.
Indeed, we can check explicitly that
( D ∘ D ) ( a 2 ) = D ( D ( a 2 ) ) = D ( 2 a ) = 2. (D \circ D)(a^2) = D(D(a^2)) = D(2a) = 2. ( D ∘ D ) ( a 2 ) = D ( D ( a 2 )) = D ( 2 a ) = 2.
If D ∘ D D \circ D D ∘ D was a derivation we would have
( D ∘ D ) ( a a ) = a ( D ∘ D ) ( a ) + ( D ∘ D ) ( a ) a = 0 , (D \circ D)(aa) = a (D \circ D)(a) + (D \circ D)(a) a = 0, ( D ∘ D ) ( aa ) = a ( D ∘ D ) ( a ) + ( D ∘ D ) ( a ) a = 0 ,
and of course in R \mathbf{R} R we have 0 ≠ 2 0 \neq 2 0 = 2 and this counterexample shows that the composition of two derivations is not necessarily a derivation. □ \quad \square □
Exercise 1.9
Let L 1 L_1 L 1 and L 2 L_2 L 2 be Lie algebras. Show that L 1 L_1 L 1 is isomorphic to L 2 L_2 L 2 if and only if there is a basis B 1 B_1 B 1 of L 1 L_1 L 1 and a basis B 2 B_2 B 2 of L 2 L_2 L 2 such that the structure constants of L 1 L_1 L 1 with respect to B 1 B_1 B 1 is equal to the structure constants of L 2 L_2 L 2 with respect to B 2 B_2 B 2 .
Solution
( ⟹ ) \left( \implies \right) ( ⟹ ) Let f : L 1 → L 2 f: L_1 \to L_2 f : L 1 → L 2 be an isomorphism, and let x 1 , x 2 , … , x n x_{1}, x_{2}, \ldots, x_{n} x 1 , x 2 , … , x n be a basis of L 1 L_1 L 1 (hold up- do we know that L 1 L_1 L 1 is finite dimensional? ). (Check that you can do this ) Then f ( x 1 ) , … , f ( x n ) f(x_1), \ldots, f(x_n) f ( x 1 ) , … , f ( x n ) is a basis of L 2 L_2 L 2 . L 1 L_1 L 1 has structure constants a i j k a_{ij}^k a ij k such that
[ x i , x j ] = ∑ n = 0 k a i j k x k f ( [ x i , x j ] ) = f ( ∑ n = 0 k a i j k x k ) [ f ( x i ) , f ( x j ) ] = ∑ n = 0 k f ( a i j k x k ) = ∑ n = 0 k a i j k f ( x k ) □ [x_i, x_j] = \sum_{n=0}^k a_{ij}^k x_{k} \\[4px]
f([x_i, x_j]) = f\left(\sum_{n=0}^k a_{ij}^k x_{k}\right) \\[4px]
[f(x_i), f(x_j)] = \sum_{n=0}^k f(a_{ij}^k x_k) = \sum_{n=0}^k a_{ij}^k f(x_k) \quad \square \\[4px] [ x i , x j ] = n = 0 ∑ k a ij k x k f ([ x i , x j ]) = f ( n = 0 ∑ k a ij k x k ) [ f ( x i ) , f ( x j )] = n = 0 ∑ k f ( a ij k x k ) = n = 0 ∑ k a ij k f ( x k ) □
( ⟸ ) \left( \impliedby \right) ( ⟸ ) Let B 1 = ( x 1 , … , x n ) B_1 = (x_1, \ldots, x_n) B 1 = ( x 1 , … , x n ) be a basis of L 1 L_1 L 1 and let B 2 = ( y 1 , … , y n ) B_2 = (y_1, \ldots, y_n) B 2 = ( y 1 , … , y n ) be a basis of L 2 L_2 L 2 , with a shared set of structure constants a i j k a_{ij}^k a ij k . Let f f f be the unique linear function satisfying
f ( x i ) = y i f(x_i) = y_i f ( x i ) = y i
Of course f f f is an isomorphism of vector spaces, what we need to show is that f f f is also an isomorphism of Lie algebras, that is that f f f commutes with [ − , − ] [-,-] [ − , − ] , meaning that for all a , b ∈ L 1 a, b \in L_1 a , b ∈ L 1
f ( [ a , b ] ) = [ f ( a ) , f ( b ) ] f([a,b]) = [f(a), f(b)] f ([ a , b ]) = [ f ( a ) , f ( b )]
Use our basis to get
a = λ 1 x 1 + ⋯ + λ n x n b = μ 1 x 1 + ⋯ μ n x n a = \lambda_1 x_1 + \cdots + \lambda_n x_n \\
b =\mu_1 x_1 + \cdots \mu_n x_n a = λ 1 x 1 + ⋯ + λ n x n b = μ 1 x 1 + ⋯ μ n x n
Calculate that
f ( [ a , b ] ) = f ( [ λ 1 x 1 + ⋯ + λ n x n , μ 1 x 1 + ⋯ μ n x n ] ) = f ( [ λ 1 x 1 , ∑ i = 1 n μ i x i ] + ⋯ + [ λ n x n , ∑ i = 1 n μ i x i ] ) = f ( ∑ i = 1 n [ λ i x i , ∑ j = 1 n μ j x j ] ) = f ( ∑ i = 1 n ∑ j = 1 n [ λ i x i , μ j x j ] ) = f ( ∑ i = 1 n ∑ j = 1 n λ i μ j [ x i , x j ] ) = ∑ i = 1 n ∑ j = 1 n λ i μ j f ( [ x i , x j ] ) f([a,b]) = f([\lambda_1x_1 + \cdots + \lambda_n x_n, \mu_1 x_1 + \cdots \mu_n x_n]) \\[4px]
= f\left(\left[\lambda_1x_1, \sum_{i=1}^n \mu_i x_i \right] + \cdots + \left[\lambda_nx_n, \sum_{i=1}^n \mu_i x_i \right] \right) \\[8px]
= f\left(\sum_{i=1}^n \left[ \lambda_i x_i, \sum_{j=1}^n \mu_j x_j \right] \right)
= f\left(\sum_{i=1}^n \sum_{j=1}^n [\lambda_i x_i, \mu_jx_j]\right) \\[8px]
= f\left(\sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j [x_i, x_j]\right)
= \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j f([x_i,x_j]) \\[8px] f ([ a , b ]) = f ([ λ 1 x 1 + ⋯ + λ n x n , μ 1 x 1 + ⋯ μ n x n ]) = f ( [ λ 1 x 1 , i = 1 ∑ n μ i x i ] + ⋯ + [ λ n x n , i = 1 ∑ n μ i x i ] ) = f ( i = 1 ∑ n [ λ i x i , j = 1 ∑ n μ j x j ] ) = f ( i = 1 ∑ n j = 1 ∑ n [ λ i x i , μ j x j ] ) = f ( i = 1 ∑ n j = 1 ∑ n λ i μ j [ x i , x j ] ) = i = 1 ∑ n j = 1 ∑ n λ i μ j f ([ x i , x j ])
Recall that by the definition of a structure constant
[ x i , x j ] = ∑ k = 1 n a i j k x k [x_i, x_j] = \sum_{k=1}^n a_{ij}^k x_k [ x i , x j ] = k = 1 ∑ n a ij k x k
So we get
f ( [ a , b ] ) = ∑ i = 1 n ∑ j = 1 n λ i μ j ∑ k = 1 n a i j k x k f([a,b]) = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j \sum_{k=1}^n a_{ij}^k x_k f ([ a , b ]) = i = 1 ∑ n j = 1 ∑ n λ i μ j k = 1 ∑ n a ij k x k
Separately calculate that
[ f ( a ) , f ( b ) ] = [ f ( ∑ i = 1 n λ i x i ) , f ( ∑ j = 1 n μ j y j ) ] = [ ∑ i = 1 n λ i f ( x i ) , ∑ j = 1 n μ j f ( x j ) ] = ∑ i = 1 n ∑ j = 1 n [ λ i f ( x i ) , μ j f ( x j ) ] = ∑ i = 1 n ∑ j = 1 n λ i μ j [ f ( x i ) , f ( x j ) ] [f(a),f(b)] = \left[f\left(\sum_{i=1}^n \lambda_i x_i \right),f\left(\sum_{j=1}^n \mu_j y_j\right)\right]
= \left[ \sum_{i=1}^n \lambda_i f(x_i), \sum_{j=1}^n \mu_j f(x_j) \right] \\[8px]
= \sum_{i=1}^n \sum_{j=1}^n [\lambda_i f(x_i), \mu_j f(x_j)]
= \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j [f(x_i), f(x_j)] [ f ( a ) , f ( b )] = [ f ( i = 1 ∑ n λ i x i ) , f ( j = 1 ∑ n μ j y j ) ] = [ i = 1 ∑ n λ i f ( x i ) , j = 1 ∑ n μ j f ( x j ) ] = i = 1 ∑ n j = 1 ∑ n [ λ i f ( x i ) , μ j f ( x j )] = i = 1 ∑ n j = 1 ∑ n λ i μ j [ f ( x i ) , f ( x j )]
By the definition of f f f we get
[ f ( a ) , f ( b ) ] = ∑ i = 1 n ∑ j = 1 n λ i μ j [ y i , y j ] [f(a), f(b)] = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j [y_i, y_j] [ f ( a ) , f ( b )] = i = 1 ∑ n j = 1 ∑ n λ i μ j [ y i , y j ]
By the hypothesis B 1 = ( x 1 , … , x n ) B_1 = (x_1, \dots, x_n) B 1 = ( x 1 , … , x n ) and B 2 = ( y 1 , … , y n ) B_2 = (y_1, \dots, y_n) B 2 = ( y 1 , … , y n ) share the same structure constants a i j k a_{ij}^k a ij k so
[ f ( a ) , f ( b ) ] = ∑ i = 1 n ∑ j = 1 n λ i μ j ∑ k = 1 n a i j k x k [f(a), f(b)] = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j \sum_{k=1}^n a_{ij}^k x_k [ f ( a ) , f ( b )] = i = 1 ∑ n j = 1 ∑ n λ i μ j k = 1 ∑ n a ij k x k
We conclude that for each a , b ∈ L 1 a, b \in L_1 a , b ∈ L 1 we have
f ( [ a , b ] ) = [ f ( a ) , f ( b ) ] □ f([a,b]) = [f(a), f(b)] \quad \square f ([ a , b ]) = [ f ( a ) , f ( b )] □
Exercise 1.10
Let L L L be a Lie algebra with a basis ( x 1 , … , x n ) (x_1, \dots, x_n) ( x 1 , … , x n ) . What conditions does the Jacobi identity impose on the structure constants a i j k a_{ij}^k a ij k ?
Solution
Recall that the Jacobi identity states that for all x , y , z ∈ L x, y, z \in L x , y , z ∈ L we have
[ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 [ x , [ y , z ]] + [ y , [ z , x ]] + [ z , [ x , y ]] = 0
and that, for each i , j ∈ 1 , … , n i, j \in {1, \dots, n} i , j ∈ 1 , … , n , the structure constants satisfy the equation
[ x i , x j ] = ∑ k = 1 n a i j k x k [x_i, x_j] = \sum_{k=1}^n a_{ij}^k x_k [ x i , x j ] = k = 1 ∑ n a ij k x k
Take x = x i x = x_i x = x i , y = x j y = x_j y = x j , z = x k z = x_k z = x k . Then
0 = [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = [ x i , [ x j , x k ] ] + [ x j , [ x k , x i ] ] + [ x k , [ x i , x j ] ] = [ x i , ∑ l = 1 n a j k l x l ] + [ x j , ∑ l = 1 n a k i l x l ] + [ x k , ∑ l = 1 n a i j l x l ] = ∑ l = 1 n a j k l [ x i , x l ] + ∑ l = 1 n a k i l [ x j , x l ] + ∑ l = 1 n a i j l [ x k , x l ] = ∑ l = 1 n a i j l [ x i , x l ] + a k i l [ x j , x l ] + a i j l [ x k , x l ] = ∑ l = 1 n a i j l ∑ m = 1 n a i l m x m + a k i l ∑ m = 1 n a j l m x m + a i j l ∑ m = 1 n a i k m x m = ∑ l = 1 n ∑ m = 1 n a i j l a i l m x m + a k i l a j l m x m + a i j l a i k m x m = ∑ m = 1 n ∑ l = 1 n a i j l a i l m x m + a k i l a j l m x m + a i j l a i k m x m = ∑ m = 1 n ∑ l = 1 n ( a i j l a i l m + a k i l a j l m + a i j l a i k m ) x m 0 = [x,[y,z]] + [y,[z,x]] + [z, [x, y]] = [x_i, [x_j, x_k]] + [x_j, [x_k, x_i]] + [x_k, [x_i, x_j]] \\[8px]
= \left[x_i, \sum_{l=1}^n a_{jk}^l x_l \right] +
\left[x_j, \sum_{l=1}^n a_{ki}^l x_l \right] +
\left[x_k, \sum_{l=1}^n a_{ij}^l x_l \right] \\
= \sum_{l=1}^n a_{jk}^l [x_i, x_l] +
\sum_{l=1}^n a_{ki}^l [x_j, x_l ] +
\sum_{l=1}^n a_{ij}^l[x_k, x_l ] \\
= \sum_{l=1}^n a_{ij}^l [x_i, x_l] + a_{ki}^l [x_j, x_l ] + a_{ij}^l[x_k, x_l] \\
= \sum_{l=1}^n a_{ij}^l \sum_{m=1}^n a_{il}^m x_m + a_{ki}^l \sum_{m=1}^n a_{jl}^mx_m + a_{ij}^l \sum_{m=1}^n a_{ik}^m x_m \\
= \sum_{l=1}^n \sum_{m=1}^n a_{ij}^l a_{il}^m x_m + a_{ki}^l a_{jl}^mx_m + a_{ij}^l a_{ik}^m x_m \\
= \sum_{m=1}^n \sum_{l=1}^n a_{ij}^l a_{il}^m x_m + a_{ki}^l a_{jl}^mx_m + a_{ij}^l a_{ik}^m x_m \\
= \sum_{m=1}^n \sum_{l=1}^n (a_{ij}^l a_{il}^m + a_{ki}^l a_{jl}^m + a_{ij}^l a_{ik}^m)x_m \\ 0 = [ x , [ y , z ]] + [ y , [ z , x ]] + [ z , [ x , y ]] = [ x i , [ x j , x k ]] + [ x j , [ x k , x i ]] + [ x k , [ x i , x j ]] = [ x i , l = 1 ∑ n a jk l x l ] + [ x j , l = 1 ∑ n a ki l x l ] + [ x k , l = 1 ∑ n a ij l x l ] = l = 1 ∑ n a jk l [ x i , x l ] + l = 1 ∑ n a ki l [ x j , x l ] + l = 1 ∑ n a ij l [ x k , x l ] = l = 1 ∑ n a ij l [ x i , x l ] + a ki l [ x j , x l ] + a ij l [ x k , x l ] = l = 1 ∑ n a ij l m = 1 ∑ n a i l m x m + a ki l m = 1 ∑ n a j l m x m + a ij l m = 1 ∑ n a ik m x m = l = 1 ∑ n m = 1 ∑ n a ij l a i l m x m + a ki l a j l m x m + a ij l a ik m x m = m = 1 ∑ n l = 1 ∑ n a ij l a i l m x m + a ki l a j l m x m + a ij l a ik m x m = m = 1 ∑ n l = 1 ∑ n ( a ij l a i l m + a ki l a j l m + a ij l a ik m ) x m
Since ( x 1 , … , x n ) (x_1, \dots, x_n) ( x 1 , … , x n ) forms a basis they are linearly independent, so for each m ∈ 1 , … , n m \in 1, \dots, n m ∈ 1 , … , n we must have
∑ l = 1 n a i j l a i l m + a k i l a j l m + a i j l a i k m = 0 \sum_{l=1}^n a_{ij}^l a_{il}^m + a_{ki}^l a_{jl}^m + a_{ij}^l a_{ik}^m = 0 l = 1 ∑ n a ij l a i l m + a ki l a j l m + a ij l a ik m = 0
Exercise 1.11
Let L 1 L_1 L 1 and L 2 L_2 L 2 be two abelian Lie algebras. Show that L 1 L_1 L 1 and L 2 L_2 L 2 are isomorphic if and only if they have the same dimension.
Solution
( ⟹ ) (\implies) ( ⟹ ) If L 1 L_1 L 1 and L 2 L_2 L 2 are isomorphic as Lie algebras than they must be isomorphic as vector spaces ⟺ \iff ⟺ they have the same dimension
( ⟸ ) (\impliedby) ( ⟸ ) If L 1 L_1 L 1 and L 2 L_2 L 2 are the same dimension then we get a vector space isomorphism f : L 1 → L 2 f: L_1 \to L_2 f : L 1 → L 2 . To show that this is a Lie algebra isomorphism, we need to show that for each a , b ∈ L 1 a, b \in L_1 a , b ∈ L 1 we have
f ( [ a , b ] ) = [ f ( a ) , f ( b ) ] f([a,b]) = [f(a),f(b)] f ([ a , b ]) = [ f ( a ) , f ( b )]
Since L 1 L_1 L 1 is abelian we have
f ( [ a , b ] ) = f ( 0 ) = 0 , f([a,b]) = f(0) = 0, f ([ a , b ]) = f ( 0 ) = 0 ,
with the last equality coming from the fact that f f f is a vector space isomorphism. L 2 L_2 L 2 is abelian as well, so
[ f ( a ) , f ( b ) ] = 0. [f(a), f(b)] = 0. [ f ( a ) , f ( b )] = 0.
We conclude that f ( [ a , b ] ) = [ f ( a ) , f ( b ) ] f([a,b]) = [f(a),f(b)] f ([ a , b ]) = [ f ( a ) , f ( b )] for each a , b ∈ L 1 a, b \in L_1 a , b ∈ L 1 , as desired. □ \quad \square □
1.12. † 1.12. \dag \quad 1.12.† Find the structure constants of sl ( 2 , F ) \textsf{sl}(2, F) sl ( 2 , F ) with respect to the basis given by the matrices
e = ( 0 1 0 0 ) , f = ( 0 0 1 0 ) , h = ( 1 0 0 − 1 ) . e = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \>
f = \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}, \>
h = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}. e = ( 0 0 1 0 ) , f = ( 0 1 0 0 ) , h = ( 1 0 0 − 1 ) .
Solution
First calculate that
a e f e e + a e f f f + a e f h h = [ e , f ] = e f − f e = ( 0 1 0 0 ) ( 0 0 1 0 ) − ( 0 0 1 0 ) ( 0 1 0 0 ) = ( 1 0 0 0 ) − ( 0 0 0 1 ) = ( 1 0 0 − 1 ) = 0 e + 0 f + 1 h a_{ef}^e e + a_{ef}^f f + a_{ef}^h h = [e, f] = ef - fe \\[4px]
= \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \\[4px]
= \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} = 0e + 0f + 1h a e f e e + a e f f f + a e f h h = [ e , f ] = e f − f e = ( 0 0 1 0 ) ( 0 1 0 0 ) − ( 0 1 0 0 ) ( 0 0 1 0 ) = ( 1 0 0 0 ) − ( 0 0 0 1 ) = ( 1 0 0 − 1 ) = 0 e + 0 f + 1 h
Work similarly for the other combinations, avoiding duplicate work by recalling that [ a , b ] = − [ b , a ] [a, b] = -[b,a] [ a , b ] = − [ b , a ] . For e e e and h h h we get
a e h e e + a e h f f + a e h h h = [ e , h ] = e h − h e = ( 0 1 0 0 ) ( 1 0 0 − 1 ) − ( 1 0 0 − 1 ) ( 0 1 0 0 ) = ( 0 − 1 0 0 ) − ( 0 1 0 0 ) = − 2 e + 0 f + 0 h a_{eh}^e e + a_{eh}^f f + a_{eh}^h h = [e, h] = eh - he \\[4px]
= \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} - \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \\
= \begin{pmatrix}
0 & -1 \\
0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} = -2e + 0f + 0h \\[4px] a e h e e + a e h f f + a e h h h = [ e , h ] = e h − h e = ( 0 0 1 0 ) ( 1 0 0 − 1 ) − ( 1 0 0 − 1 ) ( 0 0 1 0 ) = ( 0 0 − 1 0 ) − ( 0 0 1 0 ) = − 2 e + 0 f + 0 h
For f f f and h h h we get
a f h e e + a f h f f + a f h h h = [ f , h ] = f h − h f = ( 0 0 1 0 ) ( 1 0 0 − 1 ) − ( 1 0 0 − 1 ) ( 0 0 1 0 ) = ( 0 0 1 0 ) − ( 0 0 − 1 0 ) = ( 0 0 2 0 ) = 0 e + 2 f + 0 h . a_{fh}^e e + a_{fh}^f f + a_{fh}^h h = [f, h] = fh - hf \\[4px]
= \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} - \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix} \\[4px]
= \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 \\
-1 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
2 & 0
\end{pmatrix} \\
= 0e + 2f + 0h. a f h e e + a f h f f + a f h h h = [ f , h ] = f h − h f = ( 0 1 0 0 ) ( 1 0 0 − 1 ) − ( 1 0 0 − 1 ) ( 0 1 0 0 ) = ( 0 1 0 0 ) − ( 0 − 1 0 0 ) = ( 0 2 0 0 ) = 0 e + 2 f + 0 h .
1.13 1.13 \quad 1.13 Prove that sl ( 2 , C ) \textsf{sl}(2, \mathbf{C}) sl ( 2 , C ) has no non-trivial ideals.
Solution
Let A A A be a non-zero ideal of s l ( 2 , C ) \sf{sl}(2, \bf{C}) sl ( 2 , C ) . By definition, for each a ∈ A a \in A a ∈ A and b ∈ s l ( 2 , C ) b \in \sf{sl}(2, \bf{C}) b ∈ sl ( 2 , C ) we have
[ a , b ] ∈ A [a, b] \in A [ a , b ] ∈ A
Using the basis from 1.12 1.12 1.12 ,
a = a e e + a f f + a h h , a = a_ee + a_ff + a_hh, \\ a = a e e + a f f + a h h ,
for some a e , a f , a h ∈ C a_e, a_f, a_h \in \bf{C} a e , a f , a h ∈ C . Further, since we supposed that A ≠ 0 A \neq 0 A = 0 , we can take a ≠ 0 a \neq 0 a = 0 , so we do not have a e = a f = a h = 0 a_e = a_f = a_h = 0 a e = a f = a h = 0 .
Calculate that
[ a , e ] = [ a e e + a f f + a h h , e ] = a e [ e , e ] + a f [ f , e ] + a h [ h , e ] = − a f h + 2 a h e [ a , f ] = [ a e e + a f f + a h h , f ] = a e [ e , f ] + a f [ f , f ] + a h [ h , f ] = a e h − 2 a h f [ a , h ] = [ a e e + a f f + a h h , h ] = a e [ e , h ] + a f [ f , h ] + a h [ h , h ] = − 2 a e e + 2 a f f [a,e] = [a_ee + a_ff + a_hh, e] = a_e[e,e] + a_f[f,e] + a_h[h,e] \\
= -a_fh + 2a_h e \\
[a,f] = [a_ee + a_ff + a_hh, f] = a_e[e,f] + a_f[f,f] + a_h[h,f] \\
= a_e h - 2a_h f \\
[a, h] = [a_ee + a_ff + a_hh, h] = a_e[e,h] + a_f[f,h] + a_h[h,h] \\
= -2a_e e + 2 a_f f [ a , e ] = [ a e e + a f f + a h h , e ] = a e [ e , e ] + a f [ f , e ] + a h [ h , e ] = − a f h + 2 a h e [ a , f ] = [ a e e + a f f + a h h , f ] = a e [ e , f ] + a f [ f , f ] + a h [ h , f ] = a e h − 2 a h f [ a , h ] = [ a e e + a f f + a h h , h ] = a e [ e , h ] + a f [ f , h ] + a h [ h , h ] = − 2 a e e + 2 a f f
Any linear combination of these must be in A A A , such as
a f [ a , f ] + a h [ a , h ] = a e a f h − 2 a f a h f − 2 a e a h e + 2 a f a h f = a e a f h − 2 a f a h f − 2 a e a h e + 2 a f a h f = a e a f h − 2 a e a h e a_f[a,f] + a_h[a,h] \\
= a_ea_fh - 2a_fa_hf - 2a_ea_he + 2a_fa_hf \\
= a_ea_fh - \cancel{2a_fa_hf} - 2a_ea_he + \cancel{2a_fa_hf} \\
= a_ea_fh - 2a_ea_he \\ a f [ a , f ] + a h [ a , h ] = a e a f h − 2 a f a h f − 2 a e a h e + 2 a f a h f = a e a f h − 2 a f a h f − 2 a e a h e + 2 a f a h f = a e a f h − 2 a e a h e
Dividing by a e a_e a e gives
a f h − a h e ∈ A a_fh - a_he \in A a f h − a h e ∈ A
Since
[ a , e ] = − a f h + 2 a h e ∈ A [a,e] = -a_fh + 2a_he \in A [ a , e ] = − a f h + 2 a h e ∈ A
Their sum is in the ideal as well,
a h e ∈ A ⟺ a h = 0 or e ∈ A a_h e \in A \iff a_h = 0 \text{ or } e \in A a h e ∈ A ⟺ a h = 0 or e ∈ A
If a h = 0 a_h = 0 a h = 0 then
[ a , e ] = − a f h ∈ A [ a , f ] = a e h ∈ A [a,e] = -a_fh \in A \\
[a,f] = a_eh \in A [ a , e ] = − a f h ∈ A [ a , f ] = a e h ∈ A
So
a e = a f = 0 or h ∈ A a_e = a_f = 0 \text{ or } h \in A a e = a f = 0 or h ∈ A
However a e = a f = 0 a_e = a_f = 0 a e = a f = 0 is a contradiction (since we already have a h = 0 a_h = 0 a h = 0 and explicitly can not have a e = a f = a h = 0 a_e = a_f = a_h = 0 a e = a f = a h = 0 ). Therefore we have h ∈ A h \in A h ∈ A .
Since h ∈ A h \in A h ∈ A then [ e , h ] = − 2 e ∈ A [e, h] = -2e \in A [ e , h ] = − 2 e ∈ A and [ f , h ] = 2 f ∈ A [f,h] = 2f \in A [ f , h ] = 2 f ∈ A . So we have e , f , h ∈ A ⟹ A = s l ( 2 , C ) e, f, h \in A \implies A = \sf{sl}(2,\bf{C}) e , f , h ∈ A ⟹ A = sl ( 2 , C ) since { e , f , h } \{e, f, h\} { e , f , h } is a basis for s l ( 2 , C ) \sf{sl}(2,\bf{C}) sl ( 2 , C ) .
We have shown that if a h = 0 a_h = 0 a h = 0 then A = s l ( 2 , C ) A = \sf{sl}(2, \bf{C}) A = sl ( 2 , C ) . If a h ≠ 0 a_h \neq 0 a h = 0 then e ∈ A e \in A e ∈ A , so [ e , f ] = h ∈ A [e,f] = h \in A [ e , f ] = h ∈ A so we also have A = s l ( 2 , C ) A = \sf{sl}(2, \bf{C}) A = sl ( 2 , C ) .
We have now shown that any non-zero ideal of s l ( 2 , C ) \sf{sl}(2,\bf{C}) sl ( 2 , C ) is equal to s l ( 2 , C ) \sf{sl}(2,\bf{C}) sl ( 2 , C ) itself. Therefore s l ( 2 , C ) \sf{sl}(2,\bf{C}) sl ( 2 , C ) has no non-trivial ideals. □ \quad \square □
1.14. † 1.14. \dag \quad 1.14.† Let L L L be the 3 3 3 -dimensional complex Lie algebra with basis ( x , y , z ) (x, y, z) ( x , y , z ) and Lie bracket defined by
[ x , y ] = z , [ y , z ] = x , [ z , x ] = y . [x, y] = z, \> [y, z] = x, \> [z, x] = y. [ x , y ] = z , [ y , z ] = x , [ z , x ] = y .
(Here L L L is the "complexification" of the 3 3 3 -dimensional real Lie algebra R ∧ 3 ) \mathbf{R}^{3}_{\land}) R ∧ 3 )
( i ) (\text{i}) ( i ) Show that L L L is isomorphic to the Lie subalgebra of gl ( 3 , C ) \textsf{gl}(3, \mathbf{C}) gl ( 3 , C ) consisting of all 3 × 3 3 \times 3 3 × 3 antisymmetric matrices with entries in C \mathbf{C} C .
( ii ) (\text{ii}) ( ii ) Find an explicit isomorphism sl ( 2 , C ) ≅ L \textsf{sl}(2, \mathbf{C}) \cong L sl ( 2 , C ) ≅ L .
Solution
To solve ( i ) (\text{i}) ( i ) we can make use of Exercise 1.9 1.9 1.9 , which tells us that it is sufficient to find a basis of the 3 × 3 3 \times 3 3 × 3 antisymmetric matrices with entries in C \bf{C} C { x , y , z } \{x, y, z\} { x , y , z } such that
[ x , y ] = z , [ y , z ] = x , [ z , x ] = y [x,y] = z, \> [y,z] = x, \> [z,x] = y [ x , y ] = z , [ y , z ] = x , [ z , x ] = y
Let
x = ( 0 1 0 − 1 0 0 0 0 0 ) , y = ( 0 0 − 1 0 0 0 1 0 0 ) , z = ( 0 0 0 0 0 1 0 − 1 0 ) , x = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \> y = \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}, \> z = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix}, x = 0 − 1 0 1 0 0 0 0 0 , y = 0 0 1 0 0 0 − 1 0 0 , z = 0 0 0 0 0 − 1 0 1 0 ,
then { x , y , z } \{x, y, z\} { x , y , z } is a basis for the 3 × 3 3 \times 3 3 × 3 antisymmetric matrices because they are clearly linearly independent and
( 0 a − b − a 0 c b − c 0 ) = a x + b y + c z , \begin{pmatrix}
0 & a & -b \\
-a & 0 & c \\
b & -c & 0
\end{pmatrix} = ax + by + cz, 0 − a b a 0 − c − b c 0 = a x + b y + cz ,
so it is sufficient to show that
[ x , y ] = z , [ y , z ] = x , [ z , x ] = y . [x,y] = z, \> [y,z] = x, \> [z,x] = y. [ x , y ] = z , [ y , z ] = x , [ z , x ] = y .
Calculate that
[ x , y ] = x y − y x = ( 0 1 0 − 1 0 0 0 0 0 ) ( 0 0 − 1 0 0 0 1 0 0 ) − ( 0 0 − 1 0 0 0 1 0 0 ) ( 0 1 0 − 1 0 0 0 0 0 ) = ( 0 0 0 0 0 1 0 0 0 ) − ( 0 0 0 0 0 0 0 1 0 ) = ( 0 0 0 0 0 1 0 − 1 0 ) = z , [ y , z ] = y z − z y = ( 0 0 − 1 0 0 0 1 0 0 ) ( 0 0 0 0 0 1 0 − 1 0 ) − ( 0 0 0 0 0 1 0 − 1 0 ) ( 0 0 − 1 0 0 0 1 0 0 ) = ( 0 1 0 0 0 0 0 0 0 ) − ( 0 0 0 1 0 0 0 0 0 ) = ( 0 1 0 − 1 0 0 0 0 0 ) = x , [ z , x ] = z x − x z ( 0 0 0 0 0 1 0 − 1 0 ) ( 0 1 0 − 1 0 0 0 0 0 ) − ( 0 1 0 − 1 0 0 0 0 0 ) ( 0 0 0 0 0 1 0 − 1 0 ) = ( 0 0 0 0 0 0 1 0 0 ) − ( 0 0 1 0 0 0 0 0 0 ) = ( 0 0 − 1 0 0 0 1 0 0 ) = y . [x,y] = xy - yx \\[4px]
= \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
-\begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \\[4px]
= \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0\\
\end{pmatrix} - \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix} = z, \\[4px]
[y,z] = yz - zy \\[4px]
= \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix} \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} \\[4px]
= \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix} - \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = x, \\[4px]
[z,x] = zx - xz \\[4px]
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix} \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{pmatrix} \\[4px]
= \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix} = y. [ x , y ] = x y − y x = 0 − 1 0 1 0 0 0 0 0 0 0 1 0 0 0 − 1 0 0 − 0 0 1 0 0 0 − 1 0 0 0 − 1 0 1 0 0 0 0 0 = 0 0 0 0 0 0 0 1 0 − 0 0 0 0 0 1 0 0 0 = 0 0 0 0 0 − 1 0 1 0 = z , [ y , z ] = yz − zy = 0 0 1 0 0 0 − 1 0 0 0 0 0 0 0 − 1 0 1 0 − 0 0 0 0 0 − 1 0 1 0 0 0 1 0 0 0 − 1 0 0 = 0 0 0 1 0 0 0 0 0 − 0 1 0 0 0 0 0 0 0 = 0 − 1 0 1 0 0 0 0 0 = x , [ z , x ] = z x − x z 0 0 0 0 0 − 1 0 1 0 0 − 1 0 1 0 0 0 0 0 − 0 − 1 0 1 0 0 0 0 0 0 0 0 0 0 − 1 0 1 0 = 0 0 1 0 0 0 0 0 0 − 0 0 0 0 0 0 1 0 0 = 0 0 1 0 0 0 − 1 0 0 = y .
This completes (i) \text{(i)} (i) . Recall that (ii) \text{(ii)} (ii) asks for an explicit isomorphism φ : s l ( 2 , C ) → L \varphi: \sf{sl}(2,\bf{C}) \to \mathnormal{L} φ : sl ( 2 , C ) → L . In other words, φ \varphi φ has to be a linear bijective map that respects the Lie bracket, so for each u , v ∈ s l ( 2 , C ) u, v \in \sf{sl}(2, \bf{C}) u , v ∈ sl ( 2 , C )
[ φ ( u ) , φ ( v ) ] = φ ( [ u , v ] ) [\varphi(u), \varphi(v)] = \varphi([u, v]) [ φ ( u ) , φ ( v )] = φ ([ u , v ])
Recall from 1.12 1.12 1.12 that
{ e = ( 0 1 0 0 ) , f = ( 0 0 1 0 ) , h = ( 1 0 0 − 1 ) } \left\{
e = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \> f = \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}, \> h = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\right\} { e = ( 0 0 1 0 ) , f = ( 0 1 0 0 ) , h = ( 1 0 0 − 1 ) }
is a basis for s l ( 2 , C ) \sf{sl}(2, \bf{C}) sl ( 2 , C ) and that
[ e , f ] = h , [ e , h ] = − 2 e , [ f , h ] = 2 f , [e,f] = h, \> [e, h] = -2e, \> [f,h] = 2f, [ e , f ] = h , [ e , h ] = − 2 e , [ f , h ] = 2 f ,
so it is sufficient to show that (prove this?)
[ φ ( e ) , φ ( f ) ] = φ ( [ e , f ] ) = φ ( h ) , [ φ ( e ) , φ ( h ) ] = φ ( [ e , h ] ) = − 2 φ ( e ) , [ φ ( f ) , φ ( h ) ] = φ ( [ f , h ] ) = 2 φ ( f ) . [\varphi(e), \varphi(f)] = \varphi([e, f]) = \varphi(h), \\
[\varphi(e), \varphi(h)] = \varphi([e,h]) = -2 \varphi(e), \\
[\varphi(f), \varphi(h)] = \varphi([f,h]) = 2 \varphi(f). [ φ ( e ) , φ ( f )] = φ ([ e , f ]) = φ ( h ) , [ φ ( e ) , φ ( h )] = φ ([ e , h ]) = − 2 φ ( e ) , [ φ ( f ) , φ ( h )] = φ ([ f , h ]) = 2 φ ( f ) .
The key insight comes from the following calculation
[ i x + z , i x − z ] = [ i x , i x − z ] + [ z , i x − z ] = [ i x , i x ] − [ i x , z ] + [ z , i x ] − [ z , z ] = − 2 i [ x , z ] = 2 i y [ix + z, ix - z] = [ix, ix - z] + [z, ix - z] \\
= [ix, ix] - [ix, z] + [z, ix] - [z,z] \\
= -2i [x,z] = 2iy [ i x + z , i x − z ] = [ i x , i x − z ] + [ z , i x − z ] = [ i x , i x ] − [ i x , z ] + [ z , i x ] − [ z , z ] = − 2 i [ x , z ] = 2 i y
So take (prove that this is well defined and a bijection? Enough to show that these are three linearly independent elements?)
φ ( e ) = i x + z , φ ( f ) = i x − z , φ ( h ) = 2 i y . \varphi(e) = ix + z, \> \varphi(f) = ix - z, \> \varphi(h) = 2iy. φ ( e ) = i x + z , φ ( f ) = i x − z , φ ( h ) = 2 i y .
The previous calculation verified that
[ φ ( e ) , φ ( f ) ] = φ ( h ) , [\varphi(e), \varphi(f)] = \varphi(h), [ φ ( e ) , φ ( f )] = φ ( h ) ,
so one equation down, two to go. Calculate that
[ φ ( e ) , φ ( h ) ] = [ i x + z , 2 i y ] = [ i x , 2 i y ] + [ z , 2 i y ] = − 2 [ x , y ] + 2 i [ z , y ] = − 2 i x − 2 z = − 2 φ ( e ) . [\varphi(e), \varphi(h)] = [ix + z, 2iy] = [ix, 2iy] + [z, 2iy] \\
= -2[x,y] + 2i [z,y] = -2ix - 2z = -2 \varphi(e). [ φ ( e ) , φ ( h )] = [ i x + z , 2 i y ] = [ i x , 2 i y ] + [ z , 2 i y ] = − 2 [ x , y ] + 2 i [ z , y ] = − 2 i x − 2 z = − 2 φ ( e ) .
One more to go!
[ φ ( f ) , φ ( h ) ] = [ i x − z , 2 i y ] = [ i x , 2 i y ] − [ z , 2 i y ] = − 2 [ x , y ] − 2 i [ z , y ] = 2 i x − 2 z = 2 ( i x − z ) = 2 φ ( f ) . □ [\varphi(f), \varphi(h)] = [ix - z, 2iy] = [ix, 2iy] - [z, 2iy] \\
= -2[x,y] - 2i [z,y] = 2ix - 2z = 2(ix - z) = 2 \varphi(f). \quad \square [ φ ( f ) , φ ( h )] = [ i x − z , 2 i y ] = [ i x , 2 i y ] − [ z , 2 i y ] = − 2 [ x , y ] − 2 i [ z , y ] = 2 i x − 2 z = 2 ( i x − z ) = 2 φ ( f ) . □
1.15. 1.15. \quad 1.15. Let S S S be an n × n n \times n n × n matrix with entries in a field F F F . Define
g l S ( n , F ) = { x ∈ g l ( n , F ) : x t S = − S x } . \mathsf{gl}_S (n, F) = \{ x \in \mathsf{gl}(n, F): x^tS = -Sx \}. gl S ( n , F ) = { x ∈ gl ( n , F ) : x t S = − S x } .
( i ) (\text{i}) \> ( i ) Show that g l S ( n , F ) \mathsf{gl}_S(n, F) gl S ( n , F ) is a Lie subalgebra of g l ( n , F ) \mathsf{gl}(n, F) gl ( n , F ) .
( ii ) (\text{ii}) \> ( ii ) Find g l S ( 2 , R ) \mathsf{gl}_S(2, \bf{R}) gl S ( 2 , R ) if S = ( 0 1 0 0 ) S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} S = ( 0 0 1 0 ) .
( iii ) (\text{iii}) \> ( iii ) Does there exist a matrix S S S such that g l S ( 2 , R ) \mathsf{gl}_S(2,\bf{R}) gl S ( 2 , R ) is equal to the set of all diagonal matrices in g l ( 2 , R ) \mathsf{gl}(2,\bf{R}) gl ( 2 , R ) ?
( iv ) (\text{iv}) \> ( iv ) Find a matrix S S S such that g l S ( 3 , R ) \mathsf{gl}_S (3,\bf{R}) gl S ( 3 , R ) is isomorphic to the Lie algebra R ∧ 3 \mathbf{R}^3_\land R ∧ 3 defined in § 1.2 \S 1.2 §1.2 , Example 1.
Hint : Part ( i ) (\text{i}) ( i ) of Exercise 1.14 1.14 1.14 is relevant.
Solution
(i) \text{(i)} \> (i) In order to show that g l S ( n , F ) \mathsf{gl}_S(n,F) gl S ( n , F ) is a Lie subalgebra of g l ( n , F ) \mathsf{gl}(n,F) gl ( n , F ) , we must first show that it is a vector subspace.
Let λ ∈ F \lambda \in F λ ∈ F and a , b ∈ g l S ( n , F ) a, b \in \mathsf{gl}_S(n,F) a , b ∈ gl S ( n , F ) . It suffices to show that a + λ b ∈ g l S ( n , F ) a + \lambda b \in \mathsf{gl}_S(n,F) a + λb ∈ gl S ( n , F ) .
By the definition of g l S ( n , F ) \mathsf{gl}_S(n,F) gl S ( n , F ) we have
a t S = − S a , b t S = − S b (1) \tag{1} a^tS = -Sa, \> b^tS = -Sb a t S = − S a , b t S = − S b ( 1 )
Since matrix transposition is linear
( a + λ b ) t = a t + λ b t (a + \lambda b)^t = a^t + \lambda b^t ( a + λb ) t = a t + λ b t
Multiplying by S S S
( a + λ b ) t S = ( a t + λ b t ) S = a t S + λ b t S (a + \lambda b)^tS = (a^t + \lambda b^t)S = a^tS + \lambda b^t S ( a + λb ) t S = ( a t + λ b t ) S = a t S + λ b t S
Plugging in ( 1 ) (1) ( 1 )
= − S a − λ S b = − S ( a + λ b ) = -Sa - \lambda Sb = -S(a + \lambda b) = − S a − λ S b = − S ( a + λb )
This shows that g l S ( n , F ) \mathsf{gl}_S(n,F) gl S ( n , F ) is a vector subspace of g l ( n , F ) \mathsf{gl}(n,F) gl ( n , F ) . To show that it is a Lie subalgebra it remains to show that [ a , b ] ∈ g l S ( n , F ) [a,b] \in \mathsf{gl}_S(n,F) [ a , b ] ∈ gl S ( n , F ) . Calculate that
[ a , b ] t S = ( a b − b a ) t S = ( a b ) t S − ( b a ) t S = b t a t S − a t b t S = b t ( − S a ) − a t ( − S b ) = ( a t S ) b − ( b t S ) a = − S a b − ( − S b ) a = S b a − S a b = S ( b a − a b ) = − S ( a b − b a ) = − S [ a , b ] . □ [a,b]^t S = (ab - ba)^t S = (ab)^tS - (ba)^tS \\
= b^ta^tS - a^tb^tS = b^t (-Sa) - a^t (-Sb) \\
= (a^t S)b - (b^tS)a = -Sab - (-Sb)a \\
= Sba - Sab = S (ba - ab) = -S(ab - ba) = -S [a,b]. \quad \square [ a , b ] t S = ( ab − ba ) t S = ( ab ) t S − ( ba ) t S = b t a t S − a t b t S = b t ( − S a ) − a t ( − S b ) = ( a t S ) b − ( b t S ) a = − S ab − ( − S b ) a = S ba − S ab = S ( ba − ab ) = − S ( ab − ba ) = − S [ a , b ] . □
(ii) \text{(ii)} \> (ii) Let S = ( 0 1 0 0 ) S = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} S = ( 0 0 1 0 ) , we need to find g l S ( 2 , R ) \mathsf{gl}_S(2,\mathbf{R}) gl S ( 2 , R ) . Let x = ( x 11 x 12 x 21 x 22 ) x = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} x = ( x 11 x 21 x 12 x 22 ) . Calculate that
x t S = − S x ⟺ ( x 11 x 21 x 12 x 22 ) ( 0 1 0 0 ) = − ( 0 1 0 0 ) ( x 11 x 12 x 21 x 22 ) ⟺ ( 0 x 11 0 x 12 ) = − ( x 21 x 22 0 0 ) ⟺ ( x 21 x 11 + x 22 0 x 12 ) = 0 x^tS = -Sx \\[4px]
\iff \begin{pmatrix} x_{11} & x_{21} \\ x_{12} & x_{22}\end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \\[4px]
\iff \begin{pmatrix}
0 & x_{11} \\
0 & x_{12}
\end{pmatrix}
= - \begin{pmatrix}
x_{21} & x_{22} \\
0 & 0
\end{pmatrix} \\[4px]
\iff \begin{pmatrix}
x_{21} & x_{11} + x_{22} \\
0 & x_{12}
\end{pmatrix} = 0 x t S = − S x ⟺ ( x 11 x 12 x 21 x 22 ) ( 0 0 1 0 ) = − ( 0 0 1 0 ) ( x 11 x 21 x 12 x 22 ) ⟺ ( 0 0 x 11 x 12 ) = − ( x 21 0 x 22 0 ) ⟺ ( x 21 0 x 11 + x 22 x 12 ) = 0
So we can conclude that g l S ( 2 , R ) = span { ( 1 0 0 − 1 ) } \mathsf{gl}_S(2,\mathbf{R}) = \text{span}\left\{\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}\right\} gl S ( 2 , R ) = span { ( 1 0 0 − 1 ) } . □ \quad \square □
(iii) \text{(iii)} \> (iii) We need to find or prove that their doesn't exist a matrix S S S such that g l S ( 2 , R ) = span ( { ( 1 0 0 0 ) , ( 0 0 0 1 ) } ) \mathsf{gl}_S(2,\mathbf{R}) = \text{span}\left(\left\{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}\right) gl S ( 2 , R ) = span ( { ( 1 0 0 0 ) , ( 0 0 0 1 ) } ) .
x t S = − S x ( x 11 x 12 x 21 x 22 ) ⊺ ( S 11 S 12 S 21 S 22 ) = − ( S 11 S 12 S 21 S 22 ) ( x 11 x 12 x 21 x 22 ) ( x 11 x 21 x 12 x 22 ) ( S 11 S 12 S 21 S 22 ) = − ( S 11 S 12 S 21 S 22 ) ( x 11 x 12 x 21 x 22 ) ( x 11 S 11 + x 21 S 21 x 11 S 12 + x 21 S 22 x 12 S 11 + x 22 S 21 x 12 S 12 + x 22 S 22 ) = − ( S 11 x 11 + S 12 x 21 S 11 x 12 + S 12 x 22 S 21 x 11 + S 22 x 21 S 21 x 12 + S 22 x 22 ) x 11 S 11 + x 21 S 21 + S 11 x 11 + S 12 x 21 = 0 x 11 S 12 + x 21 S 22 + S 11 x 12 + S 12 x 22 = 0 x 12 S 11 + x 22 S 21 + S 21 x 11 + S 22 x 21 = 0 x 12 S 12 + x 22 S 22 + S 21 x 12 + S 22 x 22 = 0 x^tS = -Sx \\
\begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{pmatrix}^\intercal
\begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix}
= - \begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix}
\begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
\end{pmatrix} \\[4px]
\begin{pmatrix}
x_{11} & x_{21} \\
x_{12} & x_{22}
\end{pmatrix}
\begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix}
= - \begin{pmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{pmatrix}
\begin{pmatrix}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
\end{pmatrix} \\[4px]
\begin{pmatrix}
x_{11}S_{11} + x_{21}S_{21} & x_{11}S_{12} + x_{21}S_{22} \\
x_{12}S_{11} + x_{22}S_{21} & x_{12}S_{12} + x_{22}S_{22}
\end{pmatrix} \\ = -
\begin{pmatrix}
S_{11}x_{11} + S_{12}x_{21} & S_{11}x_{12} + S_{12}x_{22} \\
S_{21}x_{11} + S_{22}x_{21} & S_{21}x_{12} + S_{22}x_{22}
\end{pmatrix} \\
x_{11}S_{11} + x_{21}S_{21} + S_{11}x_{11} + S_{12}x_{21} = 0 \\
x_{11}S_{12} + x_{21}S_{22} + S_{11}x_{12} + S_{12}x_{22} = 0 \\
x_{12}S_{11} + x_{22}S_{21} + S_{21}x_{11} + S_{22}x_{21} = 0 \\
x_{12}S_{12} + x_{22}S_{22} + S_{21}x_{12} + S_{22}x_{22} = 0 x t S = − S x ( x 11 x 21 x 12 x 22 ) ⊺ ( S 11 S 21 S 12 S 22 ) = − ( S 11 S 21 S 12 S 22 ) ( x 11 x 21 x 12 x 22 ) ( x 11 x 12 x 21 x 22 ) ( S 11 S 21 S 12 S 22 ) = − ( S 11 S 21 S 12 S 22 ) ( x 11 x 21 x 12 x 22 ) ( x 11 S 11 + x 21 S 21 x 12 S 11 + x 22 S 21 x 11 S 12 + x 21 S 22 x 12 S 12 + x 22 S 22 ) = − ( S 11 x 11 + S 12 x 21 S 21 x 11 + S 22 x 21 S 11 x 12 + S 12 x 22 S 21 x 12 + S 22 x 22 ) x 11 S 11 + x 21 S 21 + S 11 x 11 + S 12 x 21 = 0 x 11 S 12 + x 21 S 22 + S 11 x 12 + S 12 x 22 = 0 x 12 S 11 + x 22 S 21 + S 21 x 11 + S 22 x 21 = 0 x 12 S 12 + x 22 S 22 + S 21 x 12 + S 22 x 22 = 0
We need to choose S S S such that this reduces to
x 12 = x 21 = 0 x_{12} = x_{21} = 0 x 12 = x 21 = 0
The last equation can be rewritten as
( S 12 + S 21 ) x 12 + 2 S 22 x 22 = 0 (S_{12} + S_{21})x_{12} + 2S_{22}x_{22} = 0 ( S 12 + S 21 ) x 12 + 2 S 22 x 22 = 0
And the first as
( S 12 + S 21 ) x 21 + 2 S 11 x 11 = 0 (S_{12} + S_{21})x_{21} + 2S_{11}x_{11} = 0 ( S 12 + S 21 ) x 21 + 2 S 11 x 11 = 0
So we must have
S 11 = S 22 = 0 S_{11} = S_{22} = 0 S 11 = S 22 = 0
Plugging in
x 21 ( S 21 + S 12 ) = 0 x 11 S 12 + x 22 S 12 = 0 x 22 S 21 + x 11 S 21 = 0 x 12 ( S 12 + S 21 ) = 0 x_{21}(S_{21} + S_{12}) = 0 \\
x_{11}S_{12} + x_{22}S_{12} = 0 \\
x_{22}S_{21} + x_{11}S_{21} = 0 \\
x_{12}(S_{12} + S_{21}) = 0 x 21 ( S 21 + S 12 ) = 0 x 11 S 12 + x 22 S 12 = 0 x 22 S 21 + x 11 S 21 = 0 x 12 ( S 12 + S 21 ) = 0
so we would need to also have S 12 = S 21 S_{12} = S_{21} S 12 = S 21 , but this doesn't give us the desired result, so no such matrix S S S exists. □ \quad \square □
(iv) \text{(iv)} \quad (iv) We need to find S S S such that g l S ( 3 , R ) \mathsf{gl}_S(3,\mathbf{R}) gl S ( 3 , R ) is isomorphic to R ∧ 3 \mathbf{R}^3_\land R ∧ 3 . By part (i) \text{(i)} (i) of Exercise 1.14 1.14 1.14 we know that R ∧ 3 \mathbf{R}^3_\land R ∧ 3 is isomorphic to the antisymmetric 3 × 3 3 \times 3 3 × 3 matrices. So we need to find S S S such that
x t S = − S x ⟺ x t = − x x^tS = -Sx \iff x^t = -x x t S = − S x ⟺ x t = − x
Of course S = I S = I S = I solves this!
1.16. † 1.16. \dag \quad 1.16.† Show, by giving an example, that if F F F is a field of characteristic 2 2 2 , there are algebras over F F F which satisfy ( L1’ ) (\text{L1'}) ( L1’ ) and ( L 2 ) (\text{L}2) ( L 2 ) but are not Lie algebras.
Solution
Recall that
( L 1 ′ ) [ x , y ] = − [ y , x ] for all x , y ∈ L . (L1’) \tag{L1'} \phantom{(L1')} \quad [x,y] = -[y,x] \quad \text{for all} \enspace x,y \in L. ( L 1 ′ ) [ x , y ] = − [ y , x ] for all x , y ∈ L . ( L1’ )
( L 2 ) [ x , [ y , z ] ] + [ y , [ z , x ] ] + [ z , [ x , y ] ] = 0 for all x , y , z ∈ L . (L2) \tag{L2} \phantom{(L2)} \quad [x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \quad \text{for all} \enspace x,y,z \in L. ( L 2 ) [ x , [ y , z ]] + [ y , [ z , x ]] + [ z , [ x , y ]] = 0 for all x , y , z ∈ L . ( L2 )
So let's find and an algebra over F F F such that the above holds but (L1) \text{(L1)} (L1)
( L 1 ′ ) [ x , x ] = 0 for all x ∈ L (L1) \tag{L1} \phantom{(L1')} \quad [x,x] = 0 \quad \text{for all} \enspace x \in L ( L 1 ′ ) [ x , x ] = 0 for all x ∈ L ( L1 )
does not.
Consider the vector space V V V of 3 × 3 3 \times 3 3 × 3 diagonal matrices with entries in F F F and over the field of F F F . Its basis is given by
e = ( 1 0 0 0 0 0 0 0 0 ) , j = ( 0 0 0 0 1 0 0 0 0 ) , k = ( 0 0 0 0 0 0 0 0 1 ) , V = span ( { e , j , k } ) . e =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
, \enspace
j =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}, \enspace
k =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}, \\[.35em]
V =
\text{span}
\left(
\left\{
e,j,k
\right\}
\right). e = 1 0 0 0 0 0 0 0 0 , j = 0 0 0 0 1 0 0 0 0 , k = 0 0 0 0 0 0 0 0 1 , V = span ( { e , j , k } ) .
Equip it with a bilinear map given by
[ x , y ] = x y . [x,y] = xy. [ x , y ] = x y .
Calculate that
[ e , e ] = ( 1 0 0 0 0 0 0 0 0 ) ( 1 0 0 0 0 0 0 0 0 ) = ( 1 0 0 0 0 0 0 0 0 ) = e , [e,e] =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = e, [ e , e ] = 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 = 1 0 0 0 0 0 0 0 0 = e ,
[ e , j ] = ( 1 0 0 0 0 0 0 0 0 ) ( 0 0 0 0 1 0 0 0 0 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [e,j] =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ e , j ] = 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ e , k ] = ( 1 0 0 0 0 0 0 0 0 ) ( 0 0 0 0 0 0 0 0 1 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [e,k] =
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ e , k ] = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ j , e ] = ( 0 0 0 0 1 0 0 0 0 ) ( 1 0 0 0 0 0 0 0 0 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [j,e] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ j , e ] = 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ j , j ] = ( 0 0 0 0 1 0 0 0 0 ) ( 0 0 0 0 1 0 0 0 0 ) = ( 0 0 0 0 1 0 0 0 0 ) = j , [j,j] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} = j, [ j , j ] = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 = 0 0 0 0 1 0 0 0 0 = j ,
[ j , k ] = ( 0 0 0 0 1 0 0 0 0 ) ( 0 0 0 0 0 0 0 0 1 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [j,k] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ j , k ] = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ k , e ] = ( 0 0 0 0 0 0 0 0 1 ) ( 1 0 0 0 0 0 0 0 0 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [k,e] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ k , e ] = 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ k , j ] = ( 0 0 0 0 0 0 0 0 1 ) ( 0 0 0 0 1 0 0 0 0 ) = ( 0 0 0 0 0 0 0 0 0 ) = 0 , [k,j] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} = 0, [ k , j ] = 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 = 0 0 0 0 0 0 0 0 0 = 0 ,
[ k , k ] = ( 0 0 0 0 0 0 0 0 1 ) ( 0 0 0 0 0 0 0 0 1 ) = ( 0 0 0 0 0 0 0 0 1 ) = k . [k,k] =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = k. [ k , k ] = 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 = 0 0 0 0 0 0 0 0 1 = k .
Obviously (L1) \text{(L1)} (L1) does not hold, so it remains to show that (L1’) \text{(L1')} (L1’) and (L2) \text{(L2)} (L2) hold.
Let x , y ∈ V x, y \in V x , y ∈ V , and let x = λ e e + λ j j + λ k k , y = μ e e + μ j j + μ k k x = \lambda_e e + \lambda_j j + \lambda_k k, \> y = \mu_e e + \mu_j j + \mu_k k x = λ e e + λ j j + λ k k , y = μ e e + μ j j + μ k k . Calculate that
= [ x , y ] = [ λ e e + λ j j + λ k k , μ e e + μ j j + μ k k ] = λ e μ e [ e , e ] + λ e μ j [ e , j ] + λ e μ k [ e , k ] = + λ j μ e [ j , e ] + λ j μ j [ j , j ] + λ j μ k [ j , k ] = + λ k μ e [ k , e ] + λ k μ j [ k , j ] + λ k μ k [ k , k ] = λ e μ e e + λ j μ j j + λ k μ k k . \begin{aligned}
&\phantom{=} [x,y] = [\lambda_e e + \lambda_j j + \lambda_k k, \mu_e e + \mu_j j + \mu_k k] \\
&= \lambda_e \mu_e [e,e] + \lambda_e \mu_j[e,j] + \lambda_e \mu_k [e,k] \\
&\phantom{=} + \enspace \lambda_j \mu_e [j,e] + \lambda_j \mu_j [j,j] + \lambda_j \mu_k [j,k] \\
&\phantom{=} + \enspace \lambda_k \mu_e [k,e] + \lambda_k \mu_j [k,j] + \lambda_k \mu_k [k,k] \\
&= \lambda_e \mu_e e + \lambda_j \mu_j j + \lambda_k \mu_k k.
\end{aligned} = [ x , y ] = [ λ e e + λ j j + λ k k , μ e e + μ j j + μ k k ] = λ e μ e [ e , e ] + λ e μ j [ e , j ] + λ e μ k [ e , k ] = + λ j μ e [ j , e ] + λ j μ j [ j , j ] + λ j μ k [ j , k ] = + λ k μ e [ k , e ] + λ k μ j [ k , j ] + λ k μ k [ k , k ] = λ e μ e e + λ j μ j j + λ k μ k k .
By the symmetry of the above equation, [ x , y ] = [ y , x ] [x,y] = [y,x] [ x , y ] = [ y , x ] , so
[ x , y ] + [ y , x ] = [ x , y ] + [ x , y ] = ( 1 + 1 ) [ x , y ] = 0 , [x,y] + [y,x] = [x,y] + [x,y] = (1 + 1) [x,y] = 0, [ x , y ] + [ y , x ] = [ x , y ] + [ x , y ] = ( 1 + 1 ) [ x , y ] = 0 ,
therefore (L1’) \text{(L1')} (L1’) holds. Calculate that
= [ e , [ j , k ] ] + [ j , [ k , e ] ] + [ k , [ e , j ] ] = [ e , 0 ] + [ j , 0 ] + [ k , 0 ] = 0 + 0 + 0 = 0 , \begin{aligned}
&\phantom{=}[e,[j,k]] + [j, [k,e]] + [k, [e,j]] \\
&= [e,0] + [j,0] + [k,0] \\
&= 0 + 0 + 0 = 0,
\end{aligned} = [ e , [ j , k ]] + [ j , [ k , e ]] + [ k , [ e , j ]] = [ e , 0 ] + [ j , 0 ] + [ k , 0 ] = 0 + 0 + 0 = 0 ,
so (L2) \text{(L2)} (L2) holds as well. □ \enspace \square □
1.17. 1.17. \quad 1.17. Let V V V be an n n n -dimensional complex vector space and let L = g l ( V ) L = \mathsf{gl}(V) L = gl ( V ) . Suppose that x ∈ L x \in L x ∈ L is diagonalisable, with eigenvalues λ 1 , … , λ n \lambda_1, \dots, \lambda_n λ 1 , … , λ n . Show that ad x ∈ g l ( L ) \text{ad } x \in \mathsf{gl}(L) ad x ∈ gl ( L ) is also diagonalisable, and that its eigenvalues are λ i − λ j \lambda_i - \lambda_j λ i − λ j for 1 ≤ i , j ≤ n 1 \leq i, j \leq n 1 ≤ i , j ≤ n .
1.18. 1.18. \quad 1.18. Let L L L be a Lie algebra. We saw in § 1.6 \S 1.6 §1.6 , Example 1.2 ( 2 ) 1.2(2) 1.2 ( 2 ) that the maps ad x : L → L \text{ad } x: L \to L ad x : L → L for x ∈ L x \in L x ∈ L are derivations of L L L ; these are known as inner derivations . Show that if IDer L \text{IDer } L IDer L is the set of inner derivations of L L L , then IDer L \text{IDer } L IDer L is an ideal of Der L \text{Der } L Der L .
1.19. 1.19. \quad 1.19. Let A A A be an algebra and let δ : A → A \delta: A \to A δ : A → A be a derivation. Prove that δ \delta δ satisfies the Leibniz rule
δ n ( x y ) = ∑ r = 0 n ( n r ) δ r ( x ) δ n − r ( y ) for all x , y ∈ A \delta^n(xy) = \sum_{r = 0}^n \binom{n}{r} \delta^r(x) \delta^{n-r}(y) \quad \text{for all } x,y \in A δ n ( x y ) = r = 0 ∑ n ( r n ) δ r ( x ) δ n − r ( y ) for all x , y ∈ A
\\