Introduction to Complex Analysis (Graduate Studies in Mathematics 202)
Michael E. Taylor
Chapter 1. Basic calculus in the complex domain
§1.1. Complex numbers, power series, and exponentials
Exercises
1. 1. \> 1. Supplement ( 1.1.20 ) (1.1.20) ( 1.1.20 ) with the following result. Assume there exists A > 0 A > 0 A > 0 such that ∣ z n ∣ ≥ A |z_n| \geq A ∣ z n ∣ ≥ A for all n n n . Then
z n → z ⟹ 1 z n → 1 z . z_n \to z \implies \frac{1}{z_n} \to \frac{1}{z}. z n → z ⟹ z n 1 → z 1 .
Solution
Let z n → z z_n \to z z n → z . It remains to show that 1 z n → 1 z \frac{1}{z_n} \to \frac{1}{z} z n 1 → z 1 .
Lemma ∣ z ∣ > 0 |z| > 0 ∣ z ∣ > 0 .
Proof of Lemma ∣ z ∣ = 0 ⟺ z = 0 ⟺ z n → 0 ⟹ ( ∃ N s.t. n > N ⟹ ∣ z n ∣ < A ) |z| = 0 \iff z = 0 \iff z_n \to 0 \implies \left( \exists N \enspace \text{s.t.} \enspace n > N \implies |z_n| < A \right) ∣ z ∣ = 0 ⟺ z = 0 ⟺ z n → 0 ⟹ ( ∃ N s.t. n > N ⟹ ∣ z n ∣ < A ) , contradicting ∣ z n ∣ ≥ A |z_n| \geq A ∣ z n ∣ ≥ A for all n n n . □ \quad \square □
Notice that if w ∈ C , w > 0 w \in \mathbb{C}, w > 0 w ∈ C , w > 0 then
∣ w ∣ 2 = w w ‾ ⟹ 1 = w w ‾ ∣ w ∣ 2 ⟹ 1 w = w ‾ ∣ w ∣ 2 . |w|^2 = w \overline{w} \implies 1 = \frac{w\overline{w}}{|w|^2} \implies
\frac{1}{w} = \frac{\overline{w}}{|w|^2}. ∣ w ∣ 2 = w w ⟹ 1 = ∣ w ∣ 2 w w ⟹ w 1 = ∣ w ∣ 2 w .
Since z n , z > 0 z_n, z > 0 z n , z > 0 ,
∣ 1 z n − 1 z ∣ = ∣ z n ‾ ∣ z n ∣ 2 − z ‾ ∣ z ∣ 2 ∣ . \left| \frac{1}{z_n} - \frac{1}{z} \right|
= \left| \frac{\overline{z_n}}{|z_n|^2} - \frac{\overline{z}}{|z|^2} \right | . z n 1 − z 1 = ∣ z n ∣ 2 z n − ∣ z ∣ 2 z .
Therefore it is sufficient to show that
( 1 ) z n ‾ → z ‾ and 1 ∣ z n ∣ 2 → 1 ∣ z ∣ 2 , (1) \tag{1} \phantom{(1)} \quad\overline{z_n} \to \overline{z} \quad \text{and} \quad \frac{1}{|z_n|^2} \to \frac{1}{|z|^2}, ( 1 ) z n → z and ∣ z n ∣ 2 1 → ∣ z ∣ 2 1 , ( 1 )
because by Equation ( 1.1.20 ) (1.1.20) ( 1.1.20 ) if ( ξ n ) (\xi_n) ( ξ n ) is a sequence in C \mathbb{C} C then
ξ n → ξ , w n → w ⟹ ξ n w n → ξ w . \xi_n \to \xi, w_n \to w \implies \xi_nw_n \to \xi w. ξ n → ξ , w n → w ⟹ ξ n w n → ξ w .
Since
∣ z n ‾ − z ‾ ∣ = ∣ z n ‾ + − 1 ‾ z ‾ ∣ |\overline{z_n} - \overline{z}| = \left|\overline{z_n} + \overline{-1}\overline{z}\right| ∣ z n − z ∣ = z n + − 1 z
We can use Equation ( 1.1.12 ) (1.1.12) ( 1.1.12 )
( 1.1.12 ) z + w ‾ = z ‾ + w ‾ , z w ‾ = z ‾ w ‾ (1.1.12) \tag{1.1.12} \phantom{(1.1.12)} \quad \overline{z + w} = \overline{z} + \overline{w}, \quad \overline{zw} = \overline{z} \overline{w} ( 1.1.12 ) z + w = z + w , z w = z w ( 1.1.12 )
to get
∣ z n ‾ + − 1 ‾ z ‾ ∣ = ∣ z n ‾ + − z ‾ ∣ = ∣ z n − z ‾ ∣ , \left|\overline{z_n} + \overline{-1}\overline{z}\right| = \left| \overline{z_n} + \overline{-z} \right| = \left| \overline{z_n - z} \right|, z n + − 1 z = ∣ z n + − z ∣ = ∣ z n − z ∣ ,
and since ∣ ξ ‾ ∣ = ∣ ξ ∣ , ∀ ξ ∈ C |\overline{\xi}| = |\xi|, \> \forall \xi \in \mathbb{C} ∣ ξ ∣ = ∣ ξ ∣ , ∀ ξ ∈ C we have ∣ z n − z ‾ ∣ = ∣ z n − z ∣ \left|\overline{z_n-z}\right| = \left|z_n-z\right| ∣ z n − z ∣ = ∣ z n − z ∣ , so
( 2 ) ∣ z n ‾ − z ‾ ∣ = ∣ z n − z ∣ , (2) \tag{2} \phantom{(2)} \quad \left| \overline{z_n} - \overline{z} \right| = \left| z_n - z \right|, ( 2 ) ∣ z n − z ∣ = ∣ z n − z ∣ , ( 2 )
therefore z n → z ⟹ z n ‾ → z ‾ z_n \to z \implies \overline{z_n} \to \overline{z} z n → z ⟹ z n → z . Note that Equation ( 2 ) (2) ( 2 ) has a geometric interpretation as well — \text{---} — reflections preserve distance, and ξ → ξ ‾ \xi \to \overline{\xi} ξ → ξ is geometrically a reflection over the x x x -axis.
Since we have shown that z n ‾ → z ‾ \overline{z_n} \to \overline{z} z n → z , by Equation ( 1 ) (1) ( 1 ) it remains to show that 1 ∣ z n ∣ 2 → 1 ∣ z ∣ 2 \frac{1}{|z_n|^2} \to \frac{1}{|z|^2} ∣ z n ∣ 2 1 → ∣ z ∣ 2 1 . This is a sequence of real numbers. Since z n → z z_n \to z z n → z we must have ∣ z n ∣ → ∣ z ∣ |z_n| \to |z| ∣ z n ∣ → ∣ z ∣ , a sequence of reals. So what follows is a basic exercise in real analysis.
Calculate that
∣ 1 ∣ z ∣ − 1 ∣ z n ∣ ∣ = ∣ ∣ z n ∣ ∣ z ∣ ∣ z n ∣ − ∣ z ∣ ∣ z ∣ ∣ z n ∣ ∣ = ∣ ∣ z n ∣ − ∣ z ∣ ∣ z ∣ ∣ z n ∣ ∣ < ∣ ∣ z n ∣ − ∣ z ∣ A 2 ∣ . \left| \frac{1}{|z|} - \frac{1}{|z_n|} \right|
= \left| \frac{|z_n|}{|z||z_n|} - \frac{|z|}{|z||z_n|} \right| \\[.25em]
= \left| \frac{|z_n| - |z|}{|z||z_n|} \right| < \left| \frac{|z_n| - |z|}{A^2} \right| . ∣ z ∣ 1 − ∣ z n ∣ 1 = ∣ z ∣∣ z n ∣ ∣ z n ∣ − ∣ z ∣∣ z n ∣ ∣ z ∣ = ∣ z ∣∣ z n ∣ ∣ z n ∣ − ∣ z ∣ < A 2 ∣ z n ∣ − ∣ z ∣ .
Let ε > 0 \varepsilon > 0 ε > 0 . Since ∣ z n ∣ → ∣ z ∣ |z_n| \to |z| ∣ z n ∣ → ∣ z ∣ we can choose N N N such that n > N ⟹ ∣ ∣ z ∣ − ∣ z n ∣ ∣ < ε A 2 n > N \implies ||z| - |z_n|| < \varepsilon A^2 n > N ⟹ ∣∣ z ∣ − ∣ z n ∣∣ < ε A 2 . Then ∣ 1 ∣ z ∣ − 1 ∣ z n ∣ ∣ < ε \left| \frac{1}{|z|} - \frac{1}{|z_n|} \right| < \varepsilon ∣ z ∣ 1 − ∣ z n ∣ 1 < ε . Therefore 1 ∣ z n ∣ → 1 ∣ z ∣ \frac{1}{|z_n|} \to \frac{1}{|z|} ∣ z n ∣ 1 → ∣ z ∣ 1 . For a sequence of reals ( x n ) (x_n) ( x n ) , x n → x ⟹ x n 2 → x 2 x_n \to x \implies x_n^2 \to x^2 x n → x ⟹ x n 2 → x 2 . Therefore 1 ∣ z n ∣ 2 → 1 ∣ z ∣ 2 . □ \frac{1}{|z_n|^2} \to \frac{1}{|z|^2}. \quad \square ∣ z n ∣ 2 1 → ∣ z ∣ 2 1 . □
2. 2. \> 2. Show that
( 1.1.75 ) ∣ z ∣ < 1 ⟹ z k → 0 , as k → ∞ . (1.1.75) \tag{1.1.75} \phantom{(1.1.75)} \quad |z| < 1 \implies z^k \to 0, \quad \text{as} \quad k \to \infty. ( 1.1.75 ) ∣ z ∣ < 1 ⟹ z k → 0 , as k → ∞. ( 1.1.75 )
Hint. Deduce ( 1.1.75 ) (1.1.75) ( 1.1.75 ) from the assertion
( 1.1.76 ) 0 < s < 1 ⟹ k s k is bounded, for k ∈ N . (1.1.76) \tag{1.1.76} \phantom{(1.1.76)} \quad 0 < s < 1 \implies ks^k \enspace \text{is bounded, for } k \in \N. ( 1.1.76 ) 0 < s < 1 ⟹ k s k is bounded, for k ∈ N . ( 1.1.76 )
Note that this is equivalent to
( 1.1.77 ) a > 0 ⟹ k ( 1 + a ) k is bounded, for k ∈ N . (1.1.77) \tag{1.1.77} \phantom{(1.1.77)} \quad a > 0 \implies \frac{k}{(1+a)^k} \enspace \text{is bounded, for } k \in \N. ( 1.1.77 ) a > 0 ⟹ ( 1 + a ) k k is bounded, for k ∈ N . ( 1.1.77 )
Show that
( 1.1.78 ) ( 1 + a ) k = ( 1 + a ) ⋯ ( 1 + a ) ≥ 1 + k a , ∀ a > 0 , k ∈ N . (1.1.78) \tag{1.1.78} \phantom{(1.1.78)} \quad (1+a)^k = (1+a) \cdots (1+a) \geq 1 + ka, \> \forall a > 0, k \in \N. ( 1.1.78 ) ( 1 + a ) k = ( 1 + a ) ⋯ ( 1 + a ) ≥ 1 + ka , ∀ a > 0 , k ∈ N . ( 1.1.78 )
Use this to prove ( 1.1.77 ) (1.1.77) ( 1.1.77 ) , hence ( 1.1.76 ) (1.1.76) ( 1.1.76 ) , hence ( 1.1.75 ) (1.1.75) ( 1.1.75 ) .
Solution
First show ( 1.1.78 ) (1.1.78) ( 1.1.78 ) . Proceed by induction. Let
P ( k ) : ( 1 + a ) k ≥ 1 + k a , ∀ a > 0. P(k): \> (1+a)^k \geq 1 + ka, \> \forall a > 0. P ( k ) : ( 1 + a ) k ≥ 1 + ka , ∀ a > 0.
Then P ( 0 ) P(0) P ( 0 ) is the statement ( 1 + a ) 0 ≥ 1 + 0 ⋅ a ⟺ 1 ≥ 1 (1+a)^0 \geq 1 + 0 \cdot a \iff 1 \geq 1 ( 1 + a ) 0 ≥ 1 + 0 ⋅ a ⟺ 1 ≥ 1 which holds.
Assume P ( k ) P(k) P ( k ) , it remains to show P ( k + 1 ) P(k+1) P ( k + 1 ) , that is
( 1 + a ) k + 1 ≥ 1 + ( k + 1 ) a (1+a)^{k+1} \geq 1 + (k+1)a ( 1 + a ) k + 1 ≥ 1 + ( k + 1 ) a
Calculate that
( 1 + a ) k + 1 = ( 1 + a ) ⋅ ( 1 + a ) k ≥ ( 1 + a ) ⋅ ( 1 + k a ) = 1 + k a + a + k a 2 > 1 + ( k + 1 ) a . (1+a)^{k+1} = (1+a) \cdot (1+a)^k \geq (1+a) \cdot (1+ka) \\
= 1 + ka + a + ka^2 > 1 + (k+1)a. ( 1 + a ) k + 1 = ( 1 + a ) ⋅ ( 1 + a ) k ≥ ( 1 + a ) ⋅ ( 1 + ka ) = 1 + ka + a + k a 2 > 1 + ( k + 1 ) a .
This shows P ( k + 1 ) P(k+1) P ( k + 1 ) , completing the proof of ( 1.1.78 ) (1.1.78) ( 1.1.78 ) .
In light of ( 1.1.78 ) (1.1.78) ( 1.1.78 ) ,
k ( 1 + a ) k ≤ k 1 + k a < k k a = 1 a , \frac{k}{(1 + a)^k} \leq \frac{k}{1 + ka} < \frac{k}{ka} = \frac{1}{a}, ( 1 + a ) k k ≤ 1 + ka k < ka k = a 1 ,
proving ( 1.1.77 ) (1.1.77) ( 1.1.77 ) , which is equivalent to ( 1.1.76 ) (1.1.76) ( 1.1.76 ) .
Use ( 1.1.76 ) (1.1.76) ( 1.1.76 ) to calculate that there must exist R > 0 R > 0 R > 0 such that
∣ k z k ∣ = k ∣ z ∣ k < R ⟹ ∣ z k ∣ < R k , \left|kz^k\right| = k |z|^k < R \implies \left|z^k\right| < \frac{R}{k}, k z k = k ∣ z ∣ k < R ⟹ z k < k R ,
so as k → ∞ k \to \infty k → ∞ we have z k → 0. □ z^k \to 0. \quad \square z k → 0. □
3. 3. \> 3. Letting s n = ∑ k = 0 n r k s_n = \sum_{k=0}^{n}r^k s n = ∑ k = 0 n r k , write the series for r s n rs_n r s n and show that
( 1.1.79 ) ( 1 − r ) s n = 1 − r n + 1 , hence s n = 1 − r n + 1 1 − r . (1.1.79) \tag{1.1.79} \phantom{(1.1.79)} \quad (1-r)s_n = 1 - r^{n+1}, \quad \text{hence} \enspace s_n = \frac{1 - r^{n+1}}{1-r}. ( 1.1.79 ) ( 1 − r ) s n = 1 − r n + 1 , hence s n = 1 − r 1 − r n + 1 . ( 1.1.79 )
Deduce that
( 1.1.80 ) 0 < r < 1 ⟹ s n → 1 1 − r , as n → ∞ , (1.1.80) \tag{1.1.80} \phantom{(1.1.80)} \quad 0 < r < 1 \implies s_n \to \frac{1}{1-r}, \quad \text{as} \enspace n \to \infty, ( 1.1.80 ) 0 < r < 1 ⟹ s n → 1 − r 1 , as n → ∞ , ( 1.1.80 )
as we stated in ( 1.1.34 ) (1.1.34) ( 1.1.34 ) . More generally, show that
( 1.1.81 ) ∑ k = 0 ∞ z k = 1 1 − z , for ∣ z ∣ < 1. (1.1.81) \tag{1.1.81} \phantom{(1.1.81)} \quad \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}, \quad \text{for} \enspace |z| < 1. ( 1.1.81 ) k = 0 ∑ ∞ z k = 1 − z 1 , for ∣ z ∣ < 1. ( 1.1.81 )
Solution
First calculate that
r s n = r ∑ k = 0 n r k = ∑ k = 0 n r k + 1 = ∑ k = 1 n + 1 r k , rs_n = r \sum_{k=0}^n r^k = \sum_{k=0}^n r^{k+1} = \sum_{k=1}^{n+1} r^k, r s n = r k = 0 ∑ n r k = k = 0 ∑ n r k + 1 = k = 1 ∑ n + 1 r k ,
so
( 1 − r ) s n = s n − r s n = ∑ k = 0 n r k − ∑ k = 1 n + 1 r k = 1 − r n + 1 . (1 - r)s_n = s_n - r s_n = \sum_{k=0}^n r^k - \sum_{k=1}^{n+1}r^k = 1 - r^{n+1}. ( 1 − r ) s n = s n − r s n = k = 0 ∑ n r k − k = 1 ∑ n + 1 r k = 1 − r n + 1 .
Dividing by ( 1 − r ) (1-r) ( 1 − r ) we get
s n = 1 − r n + 1 1 − r , s_n = \frac{1-r^{n+1}}{1-r}, s n = 1 − r 1 − r n + 1 ,
and if 0 < r < 1 0 < r < 1 0 < r < 1 then lim n → ∞ r n + 1 = 0 \lim_{n \to \infty} r^{n+1} = 0 lim n → ∞ r n + 1 = 0 so ( 1.1.80 ) (1.1.80) ( 1.1.80 ) holds.
More generally we can show ( 1.1.81 ) (1.1.81) ( 1.1.81 ) by using Exercise 2 2 2 .
Let S n = ∑ k = 0 n z k S_n = \sum_{k=0}^n z^k S n = ∑ k = 0 n z k . Then by the same argument as before
S n = 1 − z n + 1 1 − z . S_n = \frac{1 - z^{n+1}}{1-z}. S n = 1 − z 1 − z n + 1 .
By Exercise 2 2 2 if ∣ z ∣ < 1 |z| < 1 ∣ z ∣ < 1 then lim n → ∞ z n + 1 = lim n → ∞ z n = 0 \lim_{n\to\infty} z^{n+1} = \lim_{n\to\infty}z^n = 0 lim n → ∞ z n + 1 = lim n → ∞ z n = 0 so ( 1.1.81 ) (1.1.81) ( 1.1.81 ) holds. □ \quad \square □
4. 4. \> 4. This exercise discusses the ratio test, mentioned in connection with the infinite series ( 1.1.49 ) (1.1.49) ( 1.1.49 ) and ( 1.1.62 ) (1.1.62) ( 1.1.62 ) . Consider the infinite series
( 1.1.82 ) ∑ k = 0 ∞ a k , a k ∈ C . (1.1.82) \tag{1.1.82} \phantom{(1.1.82)} \quad \sum_{k=0}^{\infty} a_k, \quad a_k \in \mathbb{C}. ( 1.1.82 ) k = 0 ∑ ∞ a k , a k ∈ C . ( 1.1.82 )
Assume there exists r < 1 r < 1 r < 1 and N < ∞ N < \infty N < ∞ such that
( 1.1.83 ) k ≥ N ⟹ ∣ a k + 1 a k ∣ ≤ r . (1.1.83) \tag{1.1.83} \phantom{(1.1.83)} \quad k \geq N \implies \left| \frac{a_{k+1}}{a_k} \right| \leq r. ( 1.1.83 ) k ≥ N ⟹ a k a k + 1 ≤ r . ( 1.1.83 )
Show that
( 1.1.84 ) ∑ k = 0 ∞ ∣ a k ∣ < ∞ . (1.1.84) \tag{1.1.84} \phantom{(1.1.84)} \quad \sum_{k=0}^{\infty} |a_k| < \infty. ( 1.1.84 ) k = 0 ∑ ∞ ∣ a k ∣ < ∞. ( 1.1.84 )
Hint . Show that
( 1.1.85 ) ∑ k = N ∞ ∣ a k ∣ ≤ ∣ a N ∣ ∑ ℓ = 0 ∞ r ℓ = ∣ a N ∣ 1 − r . (1.1.85) \tag{1.1.85} \phantom{(1.1.85)} \quad \sum_{k=N}^{\infty} |a_k| \leq |a_N| \sum_{\ell=0}^{\infty} r^\ell = \frac{|a_N|}{1-r}. ( 1.1.85 ) k = N ∑ ∞ ∣ a k ∣ ≤ ∣ a N ∣ ℓ = 0 ∑ ∞ r ℓ = 1 − r ∣ a N ∣ . ( 1.1.85 )
Solution
First we use ( 1.1.83 ) (1.1.83) ( 1.1.83 ) to obtain an upper bound on a N + k a_{N+k} a N + k
∣ a N + k ∣ = ∣ a N a N + 1 a N a N + 2 a N + 1 ⋯ a N + k a N + ( k − 1 ) ∣ ≤ ∣ a N ∣ ⋅ ∣ a N + 1 a N ∣ ∣ a N + 2 a N + 1 ∣ ⋯ ∣ a N + k a N + ( k − 1 ) ∣ ≤ ∣ a N ∣ r k , \begin{aligned}
\left| a_{N+k} \right| &= \left| a_N \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+k}}{a_{N+(k-1)}} \right| \\[.25em]
&\leq |a_N| \cdot \left| \frac{a_{N+1}}{a_N} \right| \left| \frac{a_{N+2}}{a_{N+1}} \right| \cdots \left| \frac{a_{N+k}}{a_{N+(k-1)}} \right| \\[.25em]
&\leq |a_N| r^k,
\end{aligned} ∣ a N + k ∣ = a N a N a N + 1 a N + 1 a N + 2 ⋯ a N + ( k − 1 ) a N + k ≤ ∣ a N ∣ ⋅ a N a N + 1 a N + 1 a N + 2 ⋯ a N + ( k − 1 ) a N + k ≤ ∣ a N ∣ r k ,
and immediately put it to use to show ( 1.1.85 ) (1.1.85) ( 1.1.85 )
∑ k = N ∞ ∣ a k ∣ = ∑ k = 0 ∞ ∣ a N + k ∣ ≤ ∑ k = 0 ∞ ∣ a N ∣ r k = ∣ a N ∣ ∑ k = 0 ∞ r k = ∣ a N ∣ 1 − r . \begin{aligned}
\sum_{k=N}^\infty |a_k| &= \sum_{k=0}^\infty \left| a_{N+k} \right| \leq \sum_{k=0}^\infty |a_N| r^k \\[.25em]
&= |a_N| \sum_{k=0}^\infty r^k = \frac{|a_N|}{1 - r}.
\end{aligned} k = N ∑ ∞ ∣ a k ∣ = k = 0 ∑ ∞ ∣ a N + k ∣ ≤ k = 0 ∑ ∞ ∣ a N ∣ r k = ∣ a N ∣ k = 0 ∑ ∞ r k = 1 − r ∣ a N ∣ .
The desired result ( 1.1.84 ) (1.1.84) ( 1.1.84 ) follows very easily from this as
∑ k = 0 ∞ ∣ a k ∣ = ∑ k = 0 N ∣ a k ∣ + ∑ k = N ∞ ∣ a k ∣ ≤ ∑ k = 0 N ∣ a k ∣ + ∣ a N ∣ 1 − r < ∞ . □ \begin{aligned}
\sum_{k=0}^\infty |a_k| &= \sum_{k=0}^N |a_k| + \sum_{k=N}^\infty |a_k| \\[.25em]
&\leq \sum_{k=0}^N |a_k| + \frac{|a_N|}{1-r} < \infty. \quad \square
\end{aligned} k = 0 ∑ ∞ ∣ a k ∣ = k = 0 ∑ N ∣ a k ∣ + k = N ∑ ∞ ∣ a k ∣ ≤ k = 0 ∑ N ∣ a k ∣ + 1 − r ∣ a N ∣ < ∞. □
5. 5. \> 5. In the case
( 1.1.86 ) a k = z k k ! , (1.1.86) \tag{1.1.86} \phantom{(1.1.86)} \quad a_k = \frac{z^k}{k!}, ( 1.1.86 ) a k = k ! z k , ( 1.1.86 )
show that for each z ∈ C z \in \mathbb{C} z ∈ C , there exists N < ∞ N < \infty N < ∞ such that ( 1.1.83 ) (1.1.83) ( 1.1.83 ) holds, with r = 1 / 2 r = 1/2 r = 1/2 . Also show that the ratio test applies to
( 1.1.87 ) a k = k z k , ∣ z ∣ < 1. (1.1.87) \tag{1.1.87} \phantom{(1.1.87)} \quad a_k = kz^k, \quad |z| < 1. ( 1.1.87 ) a k = k z k , ∣ z ∣ < 1. ( 1.1.87 )
Solution
Let's first do the ratio test on ( 1.1.86 ) (1.1.86) ( 1.1.86 )
∣ a k + 1 a k ∣ = ∣ z k + 1 ( k + 1 ) ! k ! z k ∣ = ∣ z k + 1 ∣ = ∣ z ∣ k + 1 . \left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{z^{k+1}}{(k+1)!} \frac{k!}{z^k}\right| = \left|\frac{z}{k+1}\right| = \frac{|z|}{k+1}. a k a k + 1 = ( k + 1 )! z k + 1 z k k ! = k + 1 z = k + 1 ∣ z ∣ .
So let N > 2 ∣ z ∣ − 1 N > 2|z|-1 N > 2∣ z ∣ − 1 . Then
k > N ⟹ ∣ z ∣ k + 1 < ∣ z ∣ 2 ∣ z ∣ = 1 2 , k > N \implies \frac{|z|}{k+1} < \frac{|z|}{2|z|} = \frac{1}{2}, k > N ⟹ k + 1 ∣ z ∣ < 2∣ z ∣ ∣ z ∣ = 2 1 ,
showing that ( 1.1.83 ) (1.1.83) ( 1.1.83 ) holds with r = 1 / 2 r = 1/2 r = 1/2 .
Next do the same for ( 1.1.87 ) (1.1.87) ( 1.1.87 )
∣ a k + 1 a k ∣ = ∣ ( k + 1 ) z k + 1 k z k ∣ = k + 1 k ∣ z ∣ < ∣ z ∣ , \left|\frac{a_{k+1}}{a_k}\right| = \left| \frac{(k+1)z^{k+1}}{kz^k} \right| = \frac{k+1}{k} \left| z \right| < |z|, a k a k + 1 = k z k ( k + 1 ) z k + 1 = k k + 1 ∣ z ∣ < ∣ z ∣ ,
since ∣ z ∣ < 1 |z| < 1 ∣ z ∣ < 1 , this passes the ratio test with r = ∣ z ∣ r=|z| r = ∣ z ∣ and for any N N N , for example N = 1. □ N=1. \quad \square N = 1. □
6. 6. \> 6. This exercise discusses the integral test for absolute convergence of an infinite series, which goes as follows. Let f f f be a positive, monotonically decreasing, continuous function on [ 0 , ∞ ) [0,\infty) [ 0 , ∞ ) , and suppose ∣ a k ∣ = f ( k ) |a_k|=f(k) ∣ a k ∣ = f ( k ) . Then
( 1.1.88 ) ∑ k = 0 ∞ ∣ a k ∣ < ∞ ⟺ ∫ 0 ∞ f ( t ) d t < ∞ . (1.1.88) \tag{1.1.88} \phantom{(1.1.88)} \quad \sum_{k=0}^{\infty} |a_k| < \infty \iff \int_{0}^{\infty} f(t) \, dt < \infty. ( 1.1.88 ) k = 0 ∑ ∞ ∣ a k ∣ < ∞ ⟺ ∫ 0 ∞ f ( t ) d t < ∞. ( 1.1.88 )
Prove this.
Hint . Use
( 1.1.89 ) ∑ k = 1 N ∣ a k ∣ ≤ ∫ 0 N f ( t ) d t ≤ ∑ k = 0 N − 1 ∣ a k ∣ . (1.1.89) \tag{1.1.89} \phantom{(1.1.89)} \quad \sum_{k=1}^N |a_k| \leq \int_0^N f(t) \, dt \leq \sum_{k=0}^{N-1} |a_k|. ( 1.1.89 ) k = 1 ∑ N ∣ a k ∣ ≤ ∫ 0 N f ( t ) d t ≤ k = 0 ∑ N − 1 ∣ a k ∣. ( 1.1.89 )
7. 7. \> 7. Use the integral test to show that, if a > 0 a > 0 a > 0 ,
( 1.1.90 ) ∑ n = 1 ∞ 1 n a < ∞ ⟺ a > 1. (1.1.90) \tag{1.1.90} \phantom{(1.1.90)} \quad \sum_{n=1}^\infty \frac{1}{n^a} < \infty \iff a > 1. ( 1.1.90 ) n = 1 ∑ ∞ n a 1 < ∞ ⟺ a > 1. ( 1.1.90 )
8. 8. \> 8. This exercise deals with alternating series. Assume b k ↘ 0 b_k \searrow 0 b k ↘ 0 . Show that
( 1.1.91 ) ∑ k = 0 ∞ ( − 1 ) k b k is convergent, (1.1.91) \tag{1.1.91} \phantom{(1.1.91)} \quad \sum_{k=0}^\infty (-1)^k b_k \enspace \text{is convergent,} ( 1.1.91 ) k = 0 ∑ ∞ ( − 1 ) k b k is convergent, ( 1.1.91 )
by showing that, for m , n ≥ 0 m,n \geq 0 m , n ≥ 0 ,
( 1.1.92 ) ∣ ∑ k = n n + m ( − 1 ) k b k ∣ ≤ b n . (1.1.92) \tag{1.1.92} \phantom{(1.1.92)} \left| \sum_{k=n}^{n+m} (-1)^kb_k \right| \leq b_n. ( 1.1.92 ) k = n ∑ n + m ( − 1 ) k b k ≤ b n . ( 1.1.92 )
9. 9. \> 9. Show that ∑ k = 1 ∞ ( − 1 ) k / k \sum_{k=1}^\infty (-1)^k/k ∑ k = 1 ∞ ( − 1 ) k / k is convergent, but not absolutely convergent.
10. 10. \> 10. Show that if f , g : ( a , b ) → C f,g: (a,b) \to \mathbb{C} f , g : ( a , b ) → C are differentiable, then
( 1.1.93 ) d d t ( f ( t ) g ( t ) ) = f ′ ( t ) g ( t ) + f ( t ) g ′ ( t ) . (1.1.93) \tag{1.1.93} \phantom{(1.1.93)} \quad \frac{d}{dt} (f(t)g(t)) = f'(t)g(t) + f(t)g'(t). ( 1.1.93 ) d t d ( f ( t ) g ( t )) = f ′ ( t ) g ( t ) + f ( t ) g ′ ( t ) . ( 1.1.93 )
Note the use of this identity in ( 1.1.66 ) (1.1.66) ( 1.1.66 ) and ( 1.1.70 ) (1.1.70) ( 1.1.70 ) .
11. 11. \> 11. Use the results of Exercise 10 10 10 to show, by induction on k k k , that
( 1.1.94 ) d d t t k = k t k − 1 , k = 1 , 2 , 3 , … , (1.1.94) \tag{1.1.94} \phantom{(1.1.94)} \quad \frac{d}{dt} t^k = kt^{k-1}, \enspace k = 1,2,3,\dots, ( 1.1.94 ) d t d t k = k t k − 1 , k = 1 , 2 , 3 , … , ( 1.1.94 )
hence
( 1.1.95 ) ∫ 0 t s k d s = 1 k + 1 t k + 1 , k = 0 , 1 , 2 , … . (1.1.95) \tag{1.1.95} \phantom{(1.1.95)} \quad \int_0^t s^k \> ds = \frac{1}{k+1}t^{k+1}, \enspace k = 0,1,2,\dots. ( 1.1.95 ) ∫ 0 t s k d s = k + 1 1 t k + 1 , k = 0 , 1 , 2 , … . ( 1.1.95 )
Note the use of these identities in ( 1.1.57 ) (1.1.57) ( 1.1.57 ) , leading to many of the identities in ( 1.1.46 ) (1.1.46) ( 1.1.46 ) –( 1.1.64 ) . (1.1.64). ( 1.1.64 ) .
12. 12. \> 12. Consider
( 1.1.96 ) φ ( z ) = z − 1 z + 1 . (1.1.96) \tag{1.1.96} \phantom{(1.1.96)} \quad \varphi(z) = \frac{z-1}{z+1}. ( 1.1.96 ) φ ( z ) = z + 1 z − 1 . ( 1.1.96 )
Show that
( 1.1.97 ) φ : C ∖ { − 1 } ⟶ C ∖ { 1 } (1.1.97) \tag{1.1.97} \phantom{(1.1.97)} \quad \varphi: \mathbb{C} \setminus \{-1\} \longrightarrow \mathbb{C} \setminus \{1\} ( 1.1.97 ) φ : C ∖ { − 1 } ⟶ C ∖ { 1 } ( 1.1.97 )
is continuous, one-to-one, and onto. Show that, if Ω = { z ∈ C : R z > 0 } \Omega = \{z \in \mathbb{C}: \mathfrak{R}z > 0\} Ω = { z ∈ C : R z > 0 } and D = { z ∈ C : ∣ z ∣ < 1 } D = \{z \in \mathbb{C}: |z| < 1\} D = { z ∈ C : ∣ z ∣ < 1 } , then
( 1.1.98 ) φ : Ω → D and φ : ∂ Ω → ∂ D ∖ { 1 } (1.1.98) \tag{1.1.98} \phantom{(1.1.98)} \quad \varphi: \Omega \to D \enspace \text{and} \enspace \varphi: \partial\Omega \to \partial D \setminus \{1\} ( 1.1.98 ) φ : Ω → D and φ : ∂ Ω → ∂ D ∖ { 1 } ( 1.1.98 )
are one-to-one and onto.
\\