1   Show that α+β=β+α\alpha + \beta = \beta + \alpha for all α,βC\alpha, \beta \in \mathbf{C}.
Solution
This follows immediately from the definition of C\mathbf{C} and the commutativity of the reals. Let α=a+bi\alpha = a + bi and β=c+di\beta = c + di for a,b,c,dRa, b, c, d \in \R. Then

α+β=(a+bi)+(c+di)=(a+c)+(b+d)i=(c+a)+(d+b)i=(c+di)+(a+bi)=β+α.\begin{aligned} \alpha + \beta &= (a + bi) + (c + di) = (a + c) + (b + d)i \\ &= (c + a) + (d + b)i = (c + di) + (a + bi) \\ &= \beta + \alpha. \quad \square \end{aligned}


2   Show that (α+β)+λ=α+(β+λ)(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda) for all α,β,λC\alpha, \beta, \lambda \in \mathbf{C}.

Solution

Let α=a+bi\alpha = a + bi, β=c+di\beta = c + di, and λ=e+fi\lambda = e + fi. Then

(α+β)+λ=(a+bi+c+di)+e+fi=((a+c)+(b+d)i)+(e+fi)=(a+c+e)+(b+d+f)i=(a+bi)+((c+e)+(d+f)i)=α+(β+λ).(\alpha + \beta) + \lambda = (a + bi + c + di) + e + fi \\ = ((a + c) + (b + d)i) + (e + fi) = (a + c + e) + (b + d + f)i \\ = (a + bi) + ((c + e) + (d + f)i) = \alpha + (\beta + \lambda). \quad \square


3   Show that (αβ)λ=α(βλ)(\alpha \beta)\lambda = \alpha(\beta \lambda) for all α,β,λC\alpha, \beta, \lambda \in \mathbf{C}.

Solution

Let α=a+bi\alpha = a + bi, β=c+di\beta = c + di, and λ=e+fi\lambda = e + fi. Then

(αβ)λ=((a+bi)(c+di))(e+fi)=((acbd)+(ad+bc)i)(e+fi)=((acbd)e(ad+bc)f)+((acbd)f+(ad+bc)e)i=(acebdeadfbcf)+(acfbdf+ade+bce)i.(\alpha \beta) \lambda = ((a + bi)(c + di)) (e + fi) \\ = ((ac - bd) + (ad + bc)i)(e + fi) \\ = ((ac - bd)e - (ad + bc)f) + ((ac - bd)f + (ad + bc)e)i \\ = (ace - bde - adf - bcf) + (acf - bdf + ade + bce)i.

Calculate separately that

α(βλ)=(a+bi)((c+di)(e+fi))=(a+bi)((cedf)+(cf+de)i)=(a(cedf)b(cf+de))+(a(cf+de)+b(cedf))i=(aceadfbcfbde)+(acf+ade+bcebdf)i.\alpha (\beta \lambda) = (a + bi)((c + di)(e + fi)) \\ = (a + bi)((ce - df) + (cf + de)i) \\ = (a(ce - df) - b(cf + de)) + (a(cf+de) + b(ce-df))i \\ = (ace - adf - bcf - bde) + (acf + ade + bce - bdf)i.

Rearranging terms shows that

(αβ)λ=α(βλ).(\alpha \beta) \lambda = \alpha (\beta \lambda). \quad \square


4   Show that λ(α+β)=λα+λβ\lambda (\alpha + \beta) = \lambda \alpha + \lambda \beta for all λ,α,βC\lambda, \alpha, \beta \in \mathbf{C}.

Solution

Let α=a+bi\alpha = a + bi, β=c+di\beta = c + di, and λ=e+fi\lambda = e + fi. Then

λ(α+β)=(e+fi)((a+bi)+(c+di))=(e+fi)((a+c)+(b+d)i)=(e(a+c)f(b+d))+(e(b+d)+f(a+c))i=(ea+ecfbfd)+(eb+ed+fa+fc)i.\lambda (\alpha + \beta) = (e + fi)((a + bi) + (c + di)) \\ = (e + fi)((a+c) + (b+d)i) \\ = (e(a+c) - f(b+d)) + (e(b+d) + f(a+c))i \\ = (ea + ec -fb - fd) + (eb + ed + fa + fc)i.

Calculate separately that

λα+λβ=(e+fi)(a+bi)+(e+fi)(c+di)=((eabf)+(eb+fa)i)+((ecfd)+(ed+fc)i)=(eabf+ecfd)+(eb+fa+ed+fc)i.\lambda \alpha + \lambda \beta = (e + fi)(a + bi) + (e + fi)(c + di) \\ = ((ea - bf) + (eb + fa)i) + ((ec - fd) + (ed + fc)i) \\ = (ea - bf + ec - fd) + (eb + fa + ed + fc)i.

Rearranging terms and the commutative property for reals gives

λ(α+β)=λα+λβ.\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta. \quad \square


5   Show that for every αC\alpha \in \mathbf{C}, there exists a unique βC\beta \in \mathbf{C} such that α+β=0\alpha + \beta = 0.

Solution

Let α=a+bi\alpha = a + bi. Let β=abi\beta = -a - bi. Clearly α+β=0\alpha + \beta = 0. Let β=c+di\beta' = c + di satisfy
α+β=0.\alpha + \beta' = 0.

Plug in,

(a+bi)+(c+di)=0(a+c)+(b+d)i=0c=a,d=b,(a + bi) + (c + di) = 0 \\ (a + c) + (b + d)i = 0 \\ c = -a, \quad d = -b,

so we have

β=β\beta' = \beta

proving uniqueness. \quad \square


6   Show that for every αC\alpha \in \mathbf{C} with α0\alpha \neq 0, there exists a unique βC\beta \in \mathbf{C} such that αβ=1\alpha \beta = 1.

Solution

Let α=a+bi\alpha = a + bi. Then

α×α=(a+bi)(abi)=a2+b2\alpha \times \overline{\alpha} = (a + bi)(a - bi) = a^2 + b^2

Assume for the purpose of contradiction that a2+b2=0a^2 + b^2 = 0. Then a=b=0a = b = 0. Then by definition α=0\alpha = 0. But we are given α0\alpha \neq 0, a contradiction. Therefore a2+b20a^2 + b^2 \neq 0.

Let

β=abia2+b2,\beta = \frac{a - bi}{a^2 + b^2},

which is well-defined because a2+b20a^2 + b^2 \neq 0. Clearly αβ=1\alpha \beta = 1. What remains to be shown is uniqueness.

Let β=c+di\beta' = c + di satisfy

αβ=1.\alpha \beta' = 1.

Plug in to get

(a+bi)(c+di)=1    (acbd)+(ad+bc)i=1    acbd=1andad+bc=0(a + bi)(c + di) = 1 \\ \iff (ac - bd) + (ad + bc)i = 1 \\ \iff ac - bd = 1 \quad \text{and} \quad ad + bc = 0

ac=1+bdc=1+bda0=ad+bc=ad+b+b2da0=a2d+b+b2da2d+b2d=bd=ba2+b2c=1+bda=1b2a2+b2a=a2+b2b2a(a2+b2)=aa2+b2.ac = 1 + bd \\[4px] c = \frac{1 + bd}{a} \\[4px] 0 = ad + bc = ad + \frac{b + b^2d}{a} \\ 0 = a^2d + b + b^2d \\ a^2d + b^2d = -b \\ d = \frac{-b}{a^2+b^2} \\[4px] c = \frac{1 + bd}{a} = \frac{1 - \frac{b^2}{a^2+b^2}}{a} = \frac{a^2 + b^2 - b^2}{a(a^2 + b^2)} \\ = \frac{a}{a^2 + b^2}. \quad \square


7   Show that

1+3i2\frac{-1 + \sqrt{3}i}{2}

is a cube root of 11 (meaning that its cube equals 11).

Solution
Let x=1+3i2x = \frac{-1 + \sqrt{3}i}{2}. Calculate that

(1+3i)(1+3i)=(13)+(33)i=223i.\left(-1 + \sqrt{3}i\right) \left(-1 + \sqrt{3}i\right) = (1 - 3) + (-\sqrt{3}-\sqrt{3})i \\ = -2 - 2\sqrt{3}i.

And so

(1+3i)3=(223i)(1+3i)=(2+2×3)+(23+23)i=8.\\[1px] \left(-1 + \sqrt{3}i\right)^3 = \left(-2 - 2\sqrt{3}i\right)\left(-1 + \sqrt{3}i\right) \\ = (2 + 2 \times 3) + \left(-2\sqrt{3} + 2\sqrt{3}\right)i = 8.

Therefore x3=1x^3 = 1. \quad \square


8   Find two distinct square roots of ii.

Solution

(a+bi)(a+bi)=i    (a2b2)+(ab+ba)i=i    a2=b2and2ab=1(a+bi)(a+bi) = i \\ \iff (a^2-b^2) + (ab + ba)i = i \\ \iff a^2 = b^2 \quad \text{and} \quad 2ab = 1

Consider 12+12i\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i and 1212i-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i. Verify that indeed

(12+12i)(12+12i)=(1212)+(12+12)i=i.\left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \right) \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \right) \\[4px] = \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{1}{2}\right)i = i. \quad \square


9   Find xR4x \in \mathbf{R}^4 such that

(4,3,1,7)+2x=(5,9,6,8).(4,-3,1,7) + 2x = (5,9,-6,8).

Solution

2x=(1,12,7,1)x=(0.5,6,3.5,0.5).2x = (1, 12, -7, 1) \\ x = (0.5, 6, -3.5, 0.5). \quad \square


10   Explain why there does not exist λC\lambda \in \mathbf{C} such that

λ(23i,5+4i,6+7i)=(125i,7+22i,329i).\lambda(2-3i,5+4i,-6+7i)=(12-5i,7+22i,-32 -9i).

Solution

Let λ=a+bi\lambda = a + bi. Then

125i=(a+bi)(23i)=(2a+3b)+(3a+2b)i12=2a+3b5=3a+2b12 - 5i = (a + bi)(2 - 3i) = (2a + 3b) + (-3a + 2b)i \\ 12 = 2a + 3b \\ -5 = -3a + 2b

Multiply the top equation by three and the bottom by two

36=6a+9b10=6a+4b,36 = 6a + 9b \\ -10 = -6a + 4b,

add both equations together to get

13b=26b=212=2a+3×212=2a+62a=6a=313b = 26 \\ b = 2 \\ 12 = 2a + 3 \times 2 \\ 12 = 2a + 6 \\ 2a = 6 \\ a = 3

So we must have λ=3+2i\lambda = 3 + 2i. To double check our work calculate that

(3+2i)(23i)=(6+6)+(9+4)i=125i.(3 + 2i)(2 - 3i) = (6 + 6) + (-9 + 4)i = 12 - 5i.

We also need to have

λ(5+4i)=7+22i.\lambda(5 + 4i) = 7 + 22i.

Calculate that

(3+2i)(5+4i)=(158)+(12+10)i=7+22i.(3 + 2i)(5 + 4i) = (15 - 8) + (12 + 10)i = 7 + 22i.

Okay, so that one works, but we still got one more to go! We still need

λ(6+7i)=329i.\lambda (-6 + 7i) = -32 - 9i.

Calculate that

(3+2i)(6+7i)=(1814)+(2112)i=32+9i329i(3 + 2i) (-6 + 7i) = (-18 - 14) + (21 - 12)i \\ = -32 + 9i \neq -32 - 9i \quad \square


11   Show that (x+y)+z=x+(y+z)(x+y)+z = x+(y+z) for all x,y,zFnx,y,z \in \mathbf{F}^n.

Solution

Let x=(x1,,xn)x = (x_1, \dots, x_n), y=(y1,,yn)y = (y_1, \dots, y_n), and z=(z1,,zn)z = (z_1, \dots, z_n). Calculate that

(x+y)+z=((x1,,xn)+(y1,,yn))+(z1,,zn)=(x1+y1,,xn+yn)+(z1,,zn)=(x1+y1+z1,,xn+yn+zn)=(x1+(y1+z1),,xn+(yn+zn))=(x1,,xn)+(y1+z1,,yn+zn)=x+(y+z).(x + y) + z = ((x_1, \dots, x_n) + (y_1, \dots, y_n)) + (z_1, \dots, z_n) \\ = (x_1 + y_1, \dots, x_n + y_n) + (z_1, \dots, z_n) \\ = (x_1 + y_1 + z_1, \dots, x_n + y_n + z_n) \\ = (x_1 + (y_1 + z_1), \dots, x_n + (y_n + z_n)) \\ = (x_1, \dots, x_n) + (y_1 + z_1, \dots, y_n + z_n) \\ = x + (y + z). \quad \square


12   Show that (ab)x=a(bx)(ab)x = a(bx) for all xFnx \in \mathbf{F}^n and all a,bFa,b \in \mathbf{F}.

Solution

Let x=(x1,,xn)x = (x_1, \dots, x_n). Then

(ab)x=(ab)(x1,,xn)=((ab)x1,,(ab)xn)=(a(bx1),,a(bxn))=a(bx1,,bxn)=a(bx).(ab)x = (ab)(x_1, \dots, x_n) = ((ab)x_1, \dots, (ab)x_n) \\ = (a(bx_1), \dots, a(bx_n)) = a(bx_1, \dots, bx_n) = a(bx). \quad \square


13   Show that 1x=x1x = x for all xFnx \in \mathbf{F}^n.

Solution

Let x=(x1,,xn)x = (x_1, \dots, x_n). Then

1x=(1x1,,1xn)=(x1,,xn)=x.1x = (1x_1, \dots, 1x_n) = (x_1, \dots, x_n) = x. \quad \square


14   Show that λ(x+y)=λx+λy\lambda(x+y) = \lambda x + \lambda y for all λF\lambda \in \mathbf{F} and all x,yFnx,y \in \mathbf{F}^n.

Solution

Let x=(x1,,xn)x = (x_1, \dots, x_n) and y=(y1,,yn)y = (y_1, \dots, y_n). Then

λ(x+y)=λ(x1+y1,,xn+yn)=(λ(x1+y1),,λ(xn+yn))=(λx1+λy1,,λxn+λyn)=(λx1,,λxn)+(λy1,,λyn)=λx+λy.\lambda(x+y) = \lambda(x_1 + y_1, \dots, x_n + y_n) \\ = (\lambda(x_1 + y_1), \dots, \lambda(x_n + y_n)) = (\lambda x_1 + \lambda y_1, \dots, \lambda x_n + \lambda y_n) \\ = (\lambda x_1, \dots, \lambda x_n) + (\lambda y_1, \dots, \lambda y_n) = \lambda x + \lambda y. \quad \square


15   Show that (a+b)x=ax+bx(a+b)x = ax + bx for all a,bFa,b \in \mathbf{F} and all xFnx \in \mathbf{F}^n.

Solution

Let x=(x1,,xn)x = (x_1, \dots, x_n). Then

(a+b)x=(a+b)(x1,,xn)=((a+b)x1,,(a+b)xn)=(ax1+bx1,,axn+bxn)=(ax1,,axn)+(bx1,,bxn)=a(x1,,xn)+b(x1,,xn)=ax+bx.(a+b)x = (a+b)(x_1, \dots, x_n) = ((a+b)x_1, \dots, (a+b)x_n) \\ = (ax_1 + bx_1, \dots, ax_n + bx_n) = (ax_1, \dots, ax_n) + (bx_1, \dots, bx_n) \\ = a(x_1, \dots, x_n) + b(x_1, \dots, x_n) = ax + bx. \quad \square

\\