1   Prove that (v)=v-(-v) = v for every vVv \in V.

Solution

Let vVv \in V. By the definition of an additive inverse v-v is the unique solution to the equation

v+(v)=0.(1)\tag{1} v + (-v) = 0.

Similarly, (v)-(-v) is the unique solution to the equation

(v)+(v)=0.(2)\tag{2}(-v) + -(-v) = 0.

Using the commutative property on (1)(1) we get

(v)+v=0.(-v) + v = 0.

Plugging into (2)(2) yields

(v)=v.-(-v) = v. \quad \square


2   Suppose aFa \in \mathbf{F}, vVv \in V, and av=0av = 0. Prove that a=0a = 0 or v=0v = 0.

Solution

Assume that a0a \neq 0. Then we divide the equation av=0av = 0 by aa to get v=0v = 0.

Alternatively, assume that v0v \neq 0. We know that av=0av = 0. Assume for the purpose of contradiction that a0a \neq 0. Then divide by aa to get v=0v = 0, a contradiction. Therefore a=0a = 0.

We have shown that a0    v=0a \neq 0 \implies v = 0 and v0    a=0v \neq 0 \implies a = 0. Therefore either a=0a = 0 or v=0v = 0. \quad \square


3   Suppose v,wVv,w \in V. Explain why there exists a unique xVx \in V such that v+3x=wv + 3x = w.

Solution

Of course x=13(wv)x = \frac{1}{3}(w-v) is a solution to v+3x=wv + 3x = w. Suppose there exists xVx' \in V such that

v+3x=w.v + 3x' = w.

Subtracting vv and dividing by 33 yields

x=13(wv).x' = \frac{1}{3}(w-v). \quad \square


4   The empty set is not a vector space. The empty set fails to satisfy only one of the reqirements listed in the definition of a vector space (1.20). Which one?

Solution

The additive identity requires an element 0V0 \in V, contradicting V=V = \emptyset. \quad \square


5   Show that in the definition of a vector space (1.20), the additive inverse condition can be replaced with the condition that

0v=0 for all vV.0v = 0 \text{ for all } v \in V.

Here the 00 on the left side is the number 00, and the 00 on the right side is the additive identity of VV.

The phrase a "condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.

Solution

Let VV be a vector space. By 1.30 we know that 0v=00v = 0 for all vVv \in V.
Alternatively, let VV satisfy all the requirements of a vector space, with the replacement of the additive inverse condition by the condition that 0v=00v = 0 for all vVv \in V. We need to show that VV satisfies the additive inverse condition.
Let vVv \in V. Calculate that

v+(1)v=1v+(1)v=(11)v=0v=0.v + (-1)v = 1v + (-1)v = (1-1)v = 0v = 0. \quad \square


6   Let \infty and -\infty denote two distinct objects, neither of which is in R\mathbf{R}. Define an addition and scalar multiplication on R{,}\mathbf{R} \cup \{\infty, -\infty\} as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for tRt \in \mathbf{R} define

t={if t<0,0if t=0,if t>0,t()={if t<0,0if t=0,if t>0,t \infty = \begin{cases} -\infty &\text{if } t < 0, \\ 0 &\text{if } t = 0, \\ \infty &\text{if } t > 0, \\ \end{cases} \quad t(-\infty) = \begin{cases} \infty &\text{if } t < 0, \\ 0 &\text{if } t = 0, \\ -\infty &\text{if } t > 0, \end{cases}

and

t+=+t=+=,t+()=()+t=()+()=,+()=()+=0.t + \infty = \infty + t = \infty + \infty = \infty, \\ t + (-\infty) = (\infty) + t = (-\infty) + (-\infty) = -\infty, \\ \infty + (-\infty) = (-\infty) + \infty = 0.

With these operations of addition and scalar multiplication, is R{,}\mathbf{R} \cup \{\infty, -\infty\} a vector space over R\mathbf{R}? Explain.

Solution

As defined above R{,}\mathbf{R} \cup \{\infty, -\infty\} does not form a vector space.
Assume for the purpose of contradiction that R{,}\mathbf{R} \cup \{\infty, -\infty\} is a vector space over R\mathbf{R}.
By the above definition we have

+=\infty + \infty = \infty

Add -\infty to both sides

(+)+()=+()(\infty + \infty) + (-\infty) = \infty + (-\infty)

Since \infty and -\infty are vectors and vector addition is by definition associative,

+(+())=+()\infty + (\infty + (-\infty)) = \infty + (-\infty)

it is defined above that +=0\infty + -\infty = 0 so we can plug this in to get

+0=0,\infty + 0 = 0,

however by the definition of an additive identity in a vector space this becomes

=0,\infty = 0,

contradicting the above assertion that \infty is a distinct object. \quad \square


7   Suppose SS is a nonempty set. Let VSV^S denote the set of functions from SS to VV. Define a natural addition and scalar multiplication on VSV^S, and show that VSV^S is a vector space with these definitions.

Solution

Let f,g,hVSf,g,h \in V^S, so f,g,h:SVf,g,h: S \to V are vectors. Let λ,μ\lambda, \mu be scalars. Define vector addition and scalar multiplication as follows

(f+g)(x)=f(x)+g(x),(λf)(x)=λf(x).(f+g)(x) = f(x) + g(x), \\ (\lambda f)(x) = \lambda f(x).

We proceed to verify the vector space axioms. Let xSx \in S.

commutativity

(f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x)f+g=g+f(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x) \\ f + g = g + f

associativity

((f+g)+h)(x)=(f+g)(x)+h(x)=f(x)+g(x)+h(x)=f(x)+(g(x)+h(x))=f(x)+(g+h)(x)=(f+(g+h))(x)(f+g)+h=f+(g+h)((λμ)f)(x)=(λμ)f(x)=λ(μf(x))=λ(μf)(x)(λμ)f=λ(μf)((f + g) + h)(x) = (f+g)(x) + h(x) = f(x) + g(x) + h(x) \\ = f(x) + (g(x) + h(x)) = f(x) + (g + h)(x) = (f + (g+h))(x) \\ (f + g) + h = f + (g+h)\\[4px] ((\lambda \mu) f)(x) = (\lambda \mu)f(x) = \lambda(\mu f(x)) = \lambda (\mu f)(x) \\ (\lambda \mu)f = \lambda (\mu f)

additive identity

Define 0VS0 \in V^S as the function 0(x)=00(x) = 0. Then

(f+0)(x)=f(x)+0=f(x)f+0=f(f + 0)(x) = f(x) + 0 = f(x) \\ f + 0 = f

additive inverse

Define f-f by (f)(x)=f(x)(-f)(x) = -f(x). Then

(f+f)(x)=f(x)+f(x)=0f+f=0(f + -f)(x) = f(x) + -f(x) = 0 \\ f + -f = 0

multiplicative identity

(1f)(x)=1f(x)=f(x)1f=f(1f)(x) = 1 f(x) = f(x) \\ 1f = f

distributive properties

(λ(f+g))(x)=λ(f+g)(x)=λ(f(x)+g(x))=λf(x)+λg(x)λ(f+g)=λf+λg((λ+μ)f)(x)=(λ+μ)f(x)=λf(x)+μf(x)(λ+μ)f=λf+μf(\lambda (f + g))(x) = \lambda (f+g)(x) = \lambda (f(x) + g(x)) = \lambda f(x) + \lambda g(x) \\ \lambda (f + g) = \lambda f + \lambda g \\[4px] ((\lambda + \mu)f)(x) = (\lambda + \mu)f(x) = \lambda f(x) + \mu f(x) \\ (\lambda + \mu)f = \lambda f + \mu f \quad \square


8   Suppose VV is a real vector space.

Prove that with the definitions of addition and scalar multiplication as above, VCV_{\mathbf{C}} is a complex vector space.

Solution

Again, we go one by one through the axioms.

commutativity

(u1+iv1)+(u2+iv2)=(u1+u2)+i(v1+v2)=(u2+u1)+i(v2+v1)=(u2+iv2)+(u1+iv1)(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2) \\ = (u_2 + u_1) + i(v_2 + v_1) = (u_2 + iv_2) + (u_1 + iv_1)

associativity

((u1+iv1)+(u2+iv2))+(u3+iv3)=((u1+u2)+i(v1+v2))+(u3+iv3)=(u1+u2+u3)+i(v1+v2+v3)=(u1+(u2+u3))+i(v1+(v2+v3))=(u1+iv1)+((u2+u3)+i(v2+v3))=(u1+iv1)+((u2+iv2)+(u3+iv3))((u_1 + iv_1) + (u_2 + iv_2)) + (u_3 + iv_3) \\ = ((u_1 + u_2) + i(v_1 + v_2)) + (u_3 + iv_3) \\ = (u_1 + u_2 + u_3) + i(v_1 + v_2 + v_3) \\ = (u_1 + (u_2 + u_3)) + i(v_1 + (v_2 + v_3)) \\ = (u_1 + iv_1) + ((u_2 + u_3) + i(v_2 + v_3)) \\ = (u_1 + iv_1) + ((u_2 + iv_2) + (u_3 + iv_3))

additive identity

(u+iv)+(0+0i)=(u+0)+i(v+0)=u+iv(u + iv)+ (0 + 0i) = (u + 0) + i(v + 0) = u + iv

additive inverse

(u+iv)+(u+i(v))=(u+u)+i(v+v)=0+0i=0(u + iv) + (-u + i(-v)) = (u + -u) + i(v + -v) = 0 + 0i = 0

multiplicative identity

1(u+iv)=(1+0i)(u+iv)=(1u0v)+i(1v+0u)=u+iv1(u+iv) = (1 + 0i)(u+iv) = (1u - 0v) + i(1v + 0u) = u + iv

distributive properties

(a+bi)((u1+iv1)+(u2+iv2))=(a+bi)((u1+u2)+i(v1+v2))=(a(u1+u2)b(v1+v2))+i(a(v1+v2)+b(u1+u2))=((au1bv1)+(au2bv2))+i((av1+bu1)+(av2+bu2))=((au1bv1)+i(av1+bu1))+((au2bv2)+i(av2+bu2))=(a+bi)(u1+iv1)+(a+bi)(u2+iv2)(a + bi)((u_1 + iv_1) + (u_2 + iv_2)) = (a+bi)((u_1+u_2)+i(v_1+v_2)) \\ = (a(u_1+u_2) - b(v_1+v_2)) + i(a(v_1+v_2) + b(u_1+u_2)) \\ = ((au_1 - bv_1) + (au_2 - bv_2)) + i((av_1+bu_1)+(av_2+bu_2)) \\ = ((au_1 - bv_1) + i(av_1 + bu_1)) + ((au_2 - bv_2) + i(av_2+bu_2)) \\ = (a+bi)(u_1 + iv_1) + (a+bi)(u_2+iv_2)

((a+bi)+(c+di))(u+iv)=((a+c)+i(b+d))(u+iv)((a+c)u(b+d)v)+i((a+c)v+(b+d)u)=((aubv)+(cudv))+i((av+bu)+(cv+du))=((aubv)+i(av+bu))+((cudv)+i(cv+du))=(a+bi)(u+iv)+(c+di)(u+iv)((a + bi) + (c+di))(u + iv) = ((a+c)+i(b+d))(u+iv) \\ ((a+c)u - (b+d)v) + i((a+c)v + (b+d)u) \\ = ((au - bv) + (cu-dv)) + i((av + bu) + (cv + du)) \\ = ((au-bv) + i(av+bu)) + ((cu - dv) + i(cv + du)) \\ = (a+bi)(u + iv) + (c+di)(u+iv) \quad \square

\\