Chapter 1. The Genesis of Fourier Analysis
Exercises
1. If z = x + i y z = x + iy z = x + i y is a complex number with x , y ∈ R x, y \in \mathbb{R} x , y ∈ R , we define
∣ z ∣ = ( x 2 + y 2 ) 1 / 2 |z| = (x^2 + y^2)^{1/2} ∣ z ∣ = ( x 2 + y 2 ) 1/2
and call this quantity the modulus or absolute value of z z z .
(a) \quad \text{(a)} (a) What is the geometric interpretation of ∣ z ∣ |z| ∣ z ∣ ?
Solution
The geometric interpretation of ∣ z ∣ |z| ∣ z ∣ is the length of the vector z z z .
(b) \quad \text{(b)} (b) Show that if ∣ z ∣ = 0 |z| = 0 ∣ z ∣ = 0 , then z = 0 z = 0 z = 0 .
Solution
If ∣ z ∣ = 0 |z| = 0 ∣ z ∣ = 0 then by definition 0 = ( x 2 + y 2 ) 1 / 2 ⟹ 0 = x 2 + y 2 ⟹ x = y = 0 0 = (x^2 + y^2)^{1/2} \implies 0 = x^2 + y^2 \implies x = y = 0 0 = ( x 2 + y 2 ) 1/2 ⟹ 0 = x 2 + y 2 ⟹ x = y = 0 . □ \square □
(c) \quad \text{(c)} (c) Show that if λ ∈ R \lambda \in \R λ ∈ R , then ∣ λ z ∣ = ∣ λ ∣ ∣ z ∣ |\lambda z| = |\lambda||z| ∣ λ z ∣ = ∣ λ ∣∣ z ∣ , where ∣ λ ∣ |\lambda| ∣ λ ∣ denotes the standard absolute value of a real number.
Solution
Calculate that λ z = λ x + i λ y \lambda z = \lambda x + i \lambda y λ z = λ x + iλ y , so ∣ λ z ∣ = ( ( λ x ) 2 + ( λ y ) 2 ) 1 / 2 = ∣ λ ∣ ∣ z ∣ |\lambda z| = ((\lambda x)^2 + (\lambda y)^2 )^{1/2} = |\lambda||z| ∣ λ z ∣ = (( λ x ) 2 + ( λ y ) 2 ) 1/2 = ∣ λ ∣∣ z ∣ . □ \square □
(d) \quad \text{(d)} (d) If z 1 z_1 z 1 and z 2 z_2 z 2 are two complex numbers, prove that
∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ and ∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ . |z_1z_2| = |z_1||z_2| \quad \text{and} \quad |z_1 + z_2| \leq |z_1| + |z_2|. ∣ z 1 z 2 ∣ = ∣ z 1 ∣∣ z 2 ∣ and ∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣.
Solution
Let z 1 = x 1 + i y 1 z_1 = x_1 + iy_1 z 1 = x 1 + i y 1 and z 2 = x 2 + i y 2 z_2 = x_2 + iy_2 z 2 = x 2 + i y 2 . Calculate that z 1 ⋅ z 2 = ( x 1 + i y 1 ) ⋅ ( x 2 + i y 2 ) = x 1 x 2 + i x 1 y 2 + i y 1 x 2 − y 1 y 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = x_1x_2 + ix_1y_2 + iy_1x_2 - y_1y_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2) z 1 ⋅ z 2 = ( x 1 + i y 1 ) ⋅ ( x 2 + i y 2 ) = x 1 x 2 + i x 1 y 2 + i y 1 x 2 − y 1 y 2 = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) . So ∣ z 1 z 2 ∣ 2 = ∣ ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) ∣ 2 = ( x 1 x 2 − y 1 y 2 ) 2 + ( x 1 y 2 + y 1 x 2 ) 2 = x 1 2 x 2 2 − 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 x 2 2 = x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 |z_1z_2|^2 = |(x_1x_2 - y_1y_2) + i(x_1y_2 + y_1x_2)|^2 = (x_1x_2-y_1y_2)^2 + (x_1y_2 + y_1x_2)^2 = x_1^2x_2^2 - 2x_1x_2y_1y_2 + y_1^2y_2^2 + x_1^2y_2^2 + 2x_1x_2y_1y_2 + y_1^2x_2^2 = x_1^2x_2^2 + y_1^2y_2^2 + x_1^2y_2^2 + y_1^2x_2^2 ∣ z 1 z 2 ∣ 2 = ∣ ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + y 1 x 2 ) ∣ 2 = ( x 1 x 2 − y 1 y 2 ) 2 + ( x 1 y 2 + y 1 x 2 ) 2 = x 1 2 x 2 2 − 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 x 2 2 = x 1 2 x 2 2 + y 1 2 y 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 .
Calculate separately that ( ∣ z 1 ∣ ∣ z 2 ∣ ) 2 = ( ( x 1 2 + y 1 2 ) 1 / 2 ⋅ ( x 2 2 + y 2 2 ) 1 / 2 ) 2 = ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) = x 1 2 x 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 + y 1 2 y 2 2 (|z_1||z_2|)^2 = ((x_1^2 + y_1^2)^{1/2} \cdot (x_2^2+y_2^2)^{1/2})^2 = (x_1^2 + y_1^2)(x_2^2+y_2^2) = x_1^2x_2^2 + x_1^2y_2^2 + y_1^2x_2^2 + y_1^2y_2^2 ( ∣ z 1 ∣∣ z 2 ∣ ) 2 = (( x 1 2 + y 1 2 ) 1/2 ⋅ ( x 2 2 + y 2 2 ) 1/2 ) 2 = ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) = x 1 2 x 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 + y 1 2 y 2 2 .
Therefore ∣ z 1 z 2 ∣ 2 = ( ∣ z 1 ∣ ∣ z 2 ∣ ) 2 |z_1z_2|^2 = (|z_1||z_2|)^2 ∣ z 1 z 2 ∣ 2 = ( ∣ z 1 ∣∣ z 2 ∣ ) 2 . Since both ∣ z 1 z 2 ∣ |z_1z_2| ∣ z 1 z 2 ∣ and ∣ z 1 ∣ ∣ z 2 ∣ |z_1||z_2| ∣ z 1 ∣∣ z 2 ∣ are non-negative we can conclude that∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ |z_1z_2| = |z_1||z_2| ∣ z 1 z 2 ∣ = ∣ z 1 ∣∣ z 2 ∣ .
For the inequality we need to show that
∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ ⟺ ∣ ( x 1 + x 2 ) + i ( y 1 + y 2 ) ∣ ≤ ∣ x 1 + i y 1 ∣ + ∣ x 2 + i y 2 ∣ ⟺ ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 ≤ x 1 2 + y 1 2 + x 2 2 + y 2 2 ⟺ ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 ≤ ( x 1 2 + y 1 2 ) + 2 ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) + ( x 2 2 + y 2 2 ) ⟺ 2 x 1 x 2 + 2 y 1 y 2 ≤ 2 ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 x 2 + y 1 y 2 ≤ ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 2 x 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 ≤ ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 2 x 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 ≤ x 1 2 x 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 + y 1 2 y 2 2 ⟺ 2 x 1 x 2 y 1 y 2 ≤ x 1 2 y 2 2 + y 1 2 x 2 2 ⟺ 0 ≤ x 1 2 y 2 2 − 2 x 1 x 2 y 1 y 2 + y 1 2 x 2 2 ⟺ 0 ≤ ( x 1 y 2 − y 1 x 2 ) 2 □ |z_1 + z_2| \leq |z_1| + |z_2| \\
\iff |(x_1 + x_2) + i(y_1+y_2)| \leq |x_1 + iy_1| + |x_2 + iy_2| \\
\iff \sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2 } \leq \sqrt{x_1 ^ 2 + y_1^2} + \sqrt{x_2^2 + y_2^2} \\
\iff (x_1 + x_2)^2 + (y_1+y_2)^2 \leq (x_1^2 + y_1^2) + 2\sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)} + (x_2^2 + y_2^2) \\
\iff 2x_1x_2 + 2y_1y_2 \leq 2\sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)} \\
\iff x_1x_2 + y_1y_2 \leq \sqrt{(x_1^2+y_1^2)(x_2^2+y_2^2)} \\
\iff x_1^2x_2^2 + 2x_1x_2y_1y_2 +y_1^2y_2^2 \leq (x_1^2+y_1^2)(x_2^2+y_2^2) \\
\iff x_1^2x_2^2 + 2x_1x_2y_1y_2 +y_1^2y_2^2 \leq x_1^2x_2^2 + x_1^2y_2^2 + y_1^2x_2^2 + y_1^2y_2^2 \\
\iff 2x_1x_2y_1y_2 \leq x_1^2y_2^2 + y_1^2x_2^2 \\
\iff 0 \leq x_1^2y_2^2 - 2x_1x_2y_1y_2 + y_1^2x_2^2\\
\iff 0 \leq (x_1y_2 - y_1x_2)^2 \\ \square ∣ z 1 + z 2 ∣ ≤ ∣ z 1 ∣ + ∣ z 2 ∣ ⟺ ∣ ( x 1 + x 2 ) + i ( y 1 + y 2 ) ∣ ≤ ∣ x 1 + i y 1 ∣ + ∣ x 2 + i y 2 ∣ ⟺ ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 ≤ x 1 2 + y 1 2 + x 2 2 + y 2 2 ⟺ ( x 1 + x 2 ) 2 + ( y 1 + y 2 ) 2 ≤ ( x 1 2 + y 1 2 ) + 2 ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) + ( x 2 2 + y 2 2 ) ⟺ 2 x 1 x 2 + 2 y 1 y 2 ≤ 2 ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 x 2 + y 1 y 2 ≤ ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 2 x 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 ≤ ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) ⟺ x 1 2 x 2 2 + 2 x 1 x 2 y 1 y 2 + y 1 2 y 2 2 ≤ x 1 2 x 2 2 + x 1 2 y 2 2 + y 1 2 x 2 2 + y 1 2 y 2 2 ⟺ 2 x 1 x 2 y 1 y 2 ≤ x 1 2 y 2 2 + y 1 2 x 2 2 ⟺ 0 ≤ x 1 2 y 2 2 − 2 x 1 x 2 y 1 y 2 + y 1 2 x 2 2 ⟺ 0 ≤ ( x 1 y 2 − y 1 x 2 ) 2 □
(e) \quad \text{(e)} (e) Show that if z ≠ 0 z \neq 0 z = 0 , then ∣ 1 / z ∣ = 1 / ∣ z ∣ |1/z| = 1/|z| ∣1/ z ∣ = 1/∣ z ∣ .
Solution
Using the previous result
∣ 1 / z ∣ ∣ z ∣ = ∣ 1 / z ⋅ z ∣ = ∣ 1 ∣ = 1 |1/z||z| = |1/z \cdot z| = |1| = 1 ∣1/ z ∣∣ z ∣ = ∣1/ z ⋅ z ∣ = ∣1∣ = 1
Dividing both sides by ∣ z ∣ |z| ∣ z ∣ (which we know isn't zero thanks to (b) \text{(b)} (b) ) gives the result. □ \square □
2. If z = x + i y z = x + iy z = x + i y is a complex number with x , y ∈ R x, y \in \R x , y ∈ R , we define the complex conjugate of z z z by
z ‾ = x − i y . \overline{z} = x - iy. z = x − i y .
(a) \quad \text{(a)} (a) What is the geometric interpretation of z ‾ \overline{z} z ?
Solution
The geometric interpetation of z ‾ \overline{z} z is a reflection of the vector z z z over the x x x -axis.
(b) \quad \text{(b)} (b) Show that ∣ z ∣ 2 = z z ‾ |z|^2 = z\overline{z} ∣ z ∣ 2 = z z .
Solution
z z ‾ = ( x + i y ) ( x − i y ) = x 2 + y 2 = ∣ z ∣ 2 □ z\overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2 \quad \square z z = ( x + i y ) ( x − i y ) = x 2 + y 2 = ∣ z ∣ 2 □
(c) \quad \text{(c)} (c) Prove that if z z z belongs to the unit circle, then 1 / z = z ‾ 1/z = \overline{z} 1/ z = z .
Solution
If z z z belongs to the unit circle that means that ∣ z ∣ = 1 |z| = 1 ∣ z ∣ = 1 . Using part (b) \text{(b)} (b) we get that z z ‾ = ∣ z ∣ 2 = 1 z\overline{z} = |z|^2 = 1 z z = ∣ z ∣ 2 = 1 . Diving both sides by z z z gives the result. □ \square □
3. A sequence of complex numbers { w n } n = 1 ∞ \{w_n\}_{n=1}^{\infty} { w n } n = 1 ∞ is said to converge if there exists w ∈ C w \in \mathbb{C} w ∈ C such that
lim n → ∞ ∣ w n − w ∣ = 0 , \lim_{n \to \infty} |w_n - w| = 0, n → ∞ lim ∣ w n − w ∣ = 0 ,
and we say that w w w is a limit of the sequence.
(a) \quad \text{(a)} (a) Show that a converging sequence of complex numbers has a unique limit.
Solution
Let x , y x, y x , y be limits of { w n } n = 1 ∞ \{w_n\}_{n=1}^\infty { w n } n = 1 ∞
0 = lim n → ∞ ∣ w n − x ∣ = lim n → ∞ ∣ w n − y ∣ 0 = \lim_{n \to \infty}|w_n - x| = \lim_{n \to \infty}|w_n - y| \\ 0 = n → ∞ lim ∣ w n − x ∣ = n → ∞ lim ∣ w n − y ∣
So
∣ x − y ∣ = lim n → ∞ ∣ x − y ∣ = lim n → ∞ ∣ x − w n + w n − y ∣ ≤ lim n → ∞ ∣ x − w n ∣ + ∣ w n − y ∣ (using 1 (d)) = lim n → ∞ ∣ w n − x ∣ + ∣ w n − y ∣ = lim n → ∞ ∣ w n − x ∣ + lim n → ∞ ∣ w n − y ∣ = 0 + 0 = 0 \begin{aligned}
|x - y| &= \lim_{n \to \infty} |x - y| = \lim_{n \to \infty} |x - w_n + w_n - y| \\
&\leq \lim_{n \to \infty} |x - w_n| + |w_n - y| \quad \text{(using 1 (d))} \\
&= \lim_{n \to \infty} |w_n - x| + |w_n - y| \\
&= \lim_{n \to \infty}|w_n - x| + \lim_{n \to \infty}|w_n - y| \\
&= 0 + 0 = 0 \\
\end{aligned} ∣ x − y ∣ = n → ∞ lim ∣ x − y ∣ = n → ∞ lim ∣ x − w n + w n − y ∣ ≤ n → ∞ lim ∣ x − w n ∣ + ∣ w n − y ∣ (using 1 (d)) = n → ∞ lim ∣ w n − x ∣ + ∣ w n − y ∣ = n → ∞ lim ∣ w n − x ∣ + n → ∞ lim ∣ w n − y ∣ = 0 + 0 = 0
This shows that ∣ x − y ∣ ≤ 0 |x - y| \leq 0 ∣ x − y ∣ ≤ 0 , we also have ∣ x − y ∣ ≥ 0 |x - y| \geq 0 ∣ x − y ∣ ≥ 0 by the definition of ∣ ⋅ ∣ |\cdot| ∣ ⋅ ∣ so we have ∣ x − y ∣ = 0 |x - y| = 0 ∣ x − y ∣ = 0 . Using 1 (b) \text{1 (b)} 1 (b) we get x − y = 0 ⟹ x = y x - y = 0 \implies x = y x − y = 0 ⟹ x = y so any two limits of a converging sequence of complex numbers are equal, hence this limit is unique. □ \square □
The sequence { w n } n = 1 ∞ \{w_n\}_{n=1}^\infty { w n } n = 1 ∞ is said to be a Cauchy sequence if for every ϵ > 0 \epsilon > 0 ϵ > 0 there exists a positive integer N N N such that
∣ w n − w m ∣ < ϵ whenever n , m > N . |w_n - w_m| < \epsilon \quad \text{whenever } n, m > N. ∣ w n − w m ∣ < ϵ whenever n , m > N .
(b) \quad \text{(b)} (b) Prove that a sequence of complex numbers converges if and only if it is a Cauchy sequence. [Hint: A similar theorem exists for the convergence of a sequence of real numbers. Why does it carry over to sequences of complex numbers?]
Solution
lim n → ∞ ∣ w n − w ∣ = 0 ⟺ lim n → ∞ ∣ x n + i y n − ( x + i y ) ∣ = 0 ⟺ lim n → ∞ ∣ x n − x + i ( y n + y ) ∣ = 0 ⟺ lim n → ∞ ∣ x n − x ∣ = 0 and lim n → ∞ ∣ y n − y ∣ = 0 ⟺ ∣ x n a − x n b ∣ < ϵ whenever a , b > N 1 and ∣ y n a − y n b ∣ < ϵ whenever a , b > N 2 \lim_{n \to \infty} |w_n - w| = 0 \iff \lim_{n \to \infty} |x_n + iy_n - (x + iy)| = 0 \\
\iff \lim_{n \to \infty} |x_n - x + i(y_n + y)| = 0 \\
\iff \lim_{n \to \infty} |x_n - x| = 0 \text{ and } \lim_{n \to \infty} |y_n - y| = 0 \\
\iff |{x_n}_a - {x_n}_b| < \epsilon \quad \text{ whenever } a, b > N_1 \text{ and } \\
|{y_n}_a - {y_n}_b| < \epsilon \quad \text{ whenever } a, b > N_2 n → ∞ lim ∣ w n − w ∣ = 0 ⟺ n → ∞ lim ∣ x n + i y n − ( x + i y ) ∣ = 0 ⟺ n → ∞ lim ∣ x n − x + i ( y n + y ) ∣ = 0 ⟺ n → ∞ lim ∣ x n − x ∣ = 0 and n → ∞ lim ∣ y n − y ∣ = 0 ⟺ ∣ x n a − x n b ∣ < ϵ whenever a , b > N 1 and ∣ y n a − y n b ∣ < ϵ whenever a , b > N 2
∣ w n − w m ∣ < ϵ ⟺ ∣ x n + i y n − ( x m + i y m ) ∣ < ϵ ⟺ ∣ x n − x m + i ( y n − y m ) ∣ < ϵ ⟺ ∣ x n − x m ∣ < ϵ and ∣ y n − y m ∣ < ϵ |w_n - w_m| < \epsilon \iff |x_n + iy_n - (x_m + iy_m)| < \epsilon \\
\iff |x_n - x_m + i(y_n - y_m)| < \epsilon \\
\iff |x_n - x_m| < \epsilon \text{ and } |y_n - y_m| < \epsilon \\ ∣ w n − w m ∣ < ϵ ⟺ ∣ x n + i y n − ( x m + i y m ) ∣ < ϵ ⟺ ∣ x n − x m + i ( y n − y m ) ∣ < ϵ ⟺ ∣ x n − x m ∣ < ϵ and ∣ y n − y m ∣ < ϵ
A series ∑ n = 1 ∞ z n \sum_{n=1}^\infty z_n ∑ n = 1 ∞ z n of complex numbers is said to converge if the sequence formed by the partial sums
S N = ∑ n = 1 N z n S_N = \sum_{n=1}^N z_n S N = n = 1 ∑ N z n
converges. Let { a n } n = 1 ∞ \{a_n\}_{n=1}^\infty { a n } n = 1 ∞ be a sequence of non-negative real numbers such that the series ∑ n a n \sum_{n}a_n ∑ n a n converges.
(c) \quad \text{(c)} (c) Show that if { z n } n = 1 ∞ \{z_n\}_{n=1}^\infty { z n } n = 1 ∞ is a sequence of complex numbers satisfying ∣ z n ∣ ≤ a n |z_n| \leq a_n ∣ z n ∣ ≤ a n for all n n n , then the series ∑ n z n \sum_{n} z_n ∑ n z n converges. [Hint: Use the Cauchy criterion.]
Solution
Start with the Cauchy criterion for ∑ n a n \sum_{n}a_n ∑ n a n . For any ϵ > 0 \epsilon > 0 ϵ > 0 there exists n n n such that for all N , M > K N, M > K N , M > K we have
ϵ > ∣ A N − A M ∣ = ∣ ∑ n = 1 N a n − ∑ m = 1 M a m ∣ = ∣ ∑ j = min ( N , M ) max ( N , M ) a j ∣ \epsilon > |A_N - A_M| = \left|\sum_{n=1}^N a_n - \sum_{m=1}^M a_m \right| = \left|\sum_{j=\text{min}(N, M)}^{\text{max}(N, M)} a_j\right| ϵ > ∣ A N − A M ∣ = n = 1 ∑ N a n − m = 1 ∑ M a m = j = min ( N , M ) ∑ max ( N , M ) a j
Finish with the Cauchy criterion for ∑ n z n \sum_{n}z_n ∑ n z n
∣ S N − S M ∣ = ∣ ∑ n = 1 N z n − ∑ m = 1 M z m ∣ = ∣ ∑ j = min ( N , M ) max ( N , M ) z j ∣ ≤ ∑ j = min ( N , M ) max ( N , M ) ∣ z j ∣ ≤ ∑ j = min ( N , M ) max ( N , M ) a j ≤ ∣ ∑ j = min ( N , M ) max ( N , M ) a j ∣ < ϵ □ |S_N - S_M| = \left|\sum_{n=1}^N z_n - \sum_{m=1}^M z_m\right| = \left|\sum_{j=\text{min}(N, M)}^{\text{max}(N, M)} z_j\right| \\
\leq \sum_{j=\text{min}(N, M)}^{\text{max}(N, M)} |z_j| \leq \sum_{j=\text{min}(N, M)}^{\text{max}(N, M)} a_j \leq \left|\sum_{j=\text{min}(N, M)}^{\text{max}(N, M)} a_j\right| < \epsilon \quad \square ∣ S N − S M ∣ = n = 1 ∑ N z n − m = 1 ∑ M z m = j = min ( N , M ) ∑ max ( N , M ) z j ≤ j = min ( N , M ) ∑ max ( N , M ) ∣ z j ∣ ≤ j = min ( N , M ) ∑ max ( N , M ) a j ≤ j = min ( N , M ) ∑ max ( N , M ) a j < ϵ □
4. For z ∈ C z \in \Complex z ∈ C , we define the complex exponential by
e z = ∑ n = 0 ∞ z n n ! . e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}. e z = n = 0 ∑ ∞ n ! z n .
(a) \quad \text{(a)} (a) Prove that the above definition makes sense, by showing that the series converges for every complex number z z z . Moreover, show that the convergence is uniform on every bounded subset of C \Complex C .
Solution
First we use 3. (c) \text{(c)} (c) to show that the series converges. Let z ∈ C z \in \Complex z ∈ C , then we have a sequence of non-negative real numbers ∣ z ∣ n n ! \frac{|z|^n}{n!} n ! ∣ z ∣ n whose sum converges to e ∣ z ∣ e^{|z|} e ∣ z ∣ . Since ∣ z n n ! ∣ ≤ ∣ z ∣ n n ! \left|\frac{z^n}{n!}\right| \leq \frac{|z|^n}{n!} n ! z n ≤ n ! ∣ z ∣ n we are done.
We go on to show that the convergence is uniform on bounded subsets. Let S ⊂ C S \subset C S ⊂ C be bounded with radius R > 0 R>0 R > 0 , so for each z ∈ S z \in S z ∈ S we have ∣ z ∣ < R |z| < R ∣ z ∣ < R . Let ϵ > 0 \epsilon > 0 ϵ > 0 . Regardless of what z z z we choose from S S S
∣ ∑ n = 0 N z n n ! − e z ∣ = ∣ ∑ n = N ∞ z n n ! ∣ ≤ ∑ n = N ∞ ∣ z n n ! ∣ ≤ ∑ n = N ∞ ∣ z ∣ n n ! ≤ ∑ n = N ∞ R n n ! \left| \sum_{n=0}^N \frac{z^n}{n!}-e^z \right| = \left| \sum_{n=N}^\infty \frac{z^n}{n!} \right| \leq \sum_{n=N}^\infty \left|\frac{z^n}{n!}\right| \leq \sum_{n=N}^\infty \frac{|z|^n}{n!} \leq \sum_{n=N}^\infty \frac{R^n}{n!} n = 0 ∑ N n ! z n − e z = n = N ∑ ∞ n ! z n ≤ n = N ∑ ∞ n ! z n ≤ n = N ∑ ∞ n ! ∣ z ∣ n ≤ n = N ∑ ∞ n ! R n
So choose N N N large enough so that we have
ϵ > ∣ ∑ n = 0 N R n n ! − e R ∣ = ∣ ∑ n = N ∞ R n n ! ∣ = ∑ n = N ∞ R n n ! . \epsilon > \left|\sum_{n=0}^N \frac{R^n}{n!} - e^R\right| = \left| \sum_{n=N}^\infty \frac{R^n}{n!} \right| = \sum_{n=N}^\infty \frac{R^n}{n!}. ϵ > n = 0 ∑ N n ! R n − e R = n = N ∑ ∞ n ! R n = n = N ∑ ∞ n ! R n .
Note that the above is valid because of the convergence for the exponential series of positive reals. Combining inequalities yields the desired result
∣ ∑ n = 0 N z n n ! − e z ∣ < ϵ . □ \left| \sum_{n=0}^N \frac{z^n}{n!}-e^z \right| < \epsilon. \quad \square n = 0 ∑ N n ! z n − e z < ϵ . □
(b) \quad \text{(b)} (b) If z 1 , z 2 z_1, z_2 z 1 , z 2 are two complex numbers, prove that e z 1 e z 2 = e z 1 + z 2 e^{z_1}e^{z_2} = e^{z_1 + z_2} e z 1 e z 2 = e z 1 + z 2 . [Hint: Use the binomial theorem to expand ( z 1 + z 2 ) n (z_1 + z_2)^n ( z 1 + z 2 ) n , as well as the formula for the binomial coefficients.]
Solution
This problem had stumped me for a while. I ended up taking a break from this problem, learning some combinatorics, and coming back to it. Upon doing so I realized that there is a very easy combinatorical solution to this problem using the basic method of "double-counting". Take a look at the following infinite list of terms.
1 a b a 2 2 a b b 2 2 a 3 6 a 2 b 2 a b 2 2 b 3 6 ⋮ ⋮ ⋮ ⋮ ⋮ \begin{array}{ccccc}
1 \\[4pt]
a & b \\[4pt]
\frac{a^2}{2} & ab & \frac{b^2}{2} \\[4pt]
\frac{a^3}{6} & \frac{a^2b}{2} & \frac{ab^2}{2} & \frac{b^3}{6} \\[4pt]
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array} 1 a 2 a 2 6 a 3 ⋮ b ab 2 a 2 b ⋮ 2 b 2 2 a b 2 ⋮ 6 b 3 ⋮ ⋮
Here the term at the n + 1 n + 1 n + 1 th row and the k + 1 k + 1 k + 1 th column is given by the formula a n − k b k ( n − k ) ! k ! \frac{a^{n-k}b^{k}}{(n -k)!k!} ( n − k )! k ! a n − k b k , where we always have k ≤ n k \leq n k ≤ n , so the sum of all of these terms is ∑ n = 0 ∞ ∑ k = 0 n a n − k b k ( n − k ) ! k ! \sum_{n=0}^{\infty}\sum_{k=0}^{n} \frac{a^{n-k}b^k}{(n-k)!k!} ∑ n = 0 ∞ ∑ k = 0 n ( n − k )! k ! a n − k b k .
The key insight of the double-counting method is that there are two different ways of adding up all of the terms- you can add all the rows or add all of the columns- but the result is the same.
If we add all the rows we get
∑ n = 0 ∞ ∑ k = 0 n a n − k b k ( n − k ) ! k ! = 1 + ( a + b ) + ( a 2 2 + a b + b 2 2 ) + ( a 3 6 + a 2 b 2 + a b 2 2 + b 3 6 ) + ⋯ = ( a + b ) 0 0 ! + ( a + b ) 1 1 ! + ( a + b ) 2 2 ! + ( a + b ) 3 3 ! + ⋯ = ∑ n = 0 ∞ ( a + b ) n n ! = e a + b \sum_{n=0}^{\infty}\sum_{k=0}^{n} \frac{a^{n-k}b^k}{(n-k)!k!} \\
= 1 + (a + b) + \left(\frac{a^2}{2} + ab + \frac{b^2}{2}\right) + \left( \frac{a^3}{6} + \frac{a^2b}{2} + \frac{ab^2}{2} + \frac{b^3}{6} \right) + \cdots \\
= \frac{(a + b)^0}{0!} + \frac{(a + b)^1}{1!} + \frac{(a + b)^2}{2!} + \frac{(a + b)^3}{3!} + \cdots \\
= \sum_{n=0}^{\infty} \frac{(a + b)^n}{n!} = e^{a + b} n = 0 ∑ ∞ k = 0 ∑ n ( n − k )! k ! a n − k b k = 1 + ( a + b ) + ( 2 a 2 + ab + 2 b 2 ) + ( 6 a 3 + 2 a 2 b + 2 a b 2 + 6 b 3 ) + ⋯ = 0 ! ( a + b ) 0 + 1 ! ( a + b ) 1 + 2 ! ( a + b ) 2 + 3 ! ( a + b ) 3 + ⋯ = n = 0 ∑ ∞ n ! ( a + b ) n = e a + b
If we add all the columns we get
∑ n = 0 ∞ ∑ k = 0 n a n − k b k ( n − k ) ! k ! = ( 1 + a + a 2 2 + a 3 6 + ⋯ ) + ( b + a b + a 2 b 2 + ⋯ ) + ( b 2 2 + a b 2 2 + ⋯ ) + ( b 3 6 + ⋯ ) + ⋯ = ∑ n = 0 ∞ a n n ! + b ∑ n = 0 ∞ a n n ! + b 2 2 ∑ n = 0 ∞ a n n ! + b 3 6 ∑ n = 0 ∞ a n n ! + ⋯ = ∑ n = 0 ∞ a n n ! ( 1 + b + b 2 2 + b 3 6 + ⋯ ) = ∑ n = 0 ∞ a n n ! ⋅ ∑ k = 0 ∞ b k k ! = e a ⋅ e b \begin{aligned}
&\sum_{n=0}^{\infty}\sum_{k=0}^{n} \frac{a^{n-k}b^k}{(n-k)!k!} \\
&= \left(1 + a + \frac{a^2}{2} + \frac{a^3}{6} + \cdots \right) + \left( b + ab + \frac{a^2b}{2} + \cdots \right) \\
&+ \left( \frac{b^2}{2} + \frac{ab^2}{2} + \cdots \right) + \left(\frac{b^3}{6} + \cdots\right) + \cdots \\
&= \sum_{n=0}^{\infty} \frac{a^n}{n!} + b\sum_{n=0}^{\infty}\frac{a^n}{n!} + \frac{b^2}{2}\sum_{n=0}^{\infty}\frac{a^n}{n!} + \frac{b^3}{6}\sum_{n=0}^{\infty} \frac{a^n}{n!} + \cdots \\
&= \sum_{n=0}^{\infty}\frac{a^n}{n!} \left( 1 + b + \frac{b^2}{2} + \frac{b^3}{6} + \cdots \right) \\
&= \sum_{n=0}^{\infty}\frac{a^n}{n!} \cdot \sum_{k=0}^{\infty}\frac{b^k}{k!} = e^a \cdot e^b
\end{aligned} n = 0 ∑ ∞ k = 0 ∑ n ( n − k )! k ! a n − k b k = ( 1 + a + 2 a 2 + 6 a 3 + ⋯ ) + ( b + ab + 2 a 2 b + ⋯ ) + ( 2 b 2 + 2 a b 2 + ⋯ ) + ( 6 b 3 + ⋯ ) + ⋯ = n = 0 ∑ ∞ n ! a n + b n = 0 ∑ ∞ n ! a n + 2 b 2 n = 0 ∑ ∞ n ! a n + 6 b 3 n = 0 ∑ ∞ n ! a n + ⋯ = n = 0 ∑ ∞ n ! a n ( 1 + b + 2 b 2 + 6 b 3 + ⋯ ) = n = 0 ∑ ∞ n ! a n ⋅ k = 0 ∑ ∞ k ! b k = e a ⋅ e b
This is the heart and soul of the proof, but it is a little bit hand-wavey. I hope that the above gives the reader a clear intuition behind the proof. In order to turn this intuition into more rigorous mathematics, we use the binomial expansion
( a + b ) n = ∑ k = 0 n n ! a n − k b k ( n − k ) ! k ! (a + b)^n = \sum_{k=0}^{n} \frac{n!a^{n-k}b^k}{(n-k)!k!} ( a + b ) n = k = 0 ∑ n ( n − k )! k ! n ! a n − k b k
to calculate that
∑ n = 0 ∞ ∑ k = 0 n a n − k b k ( n − k ) ! k ! = ∑ n = 0 ∞ ( a + b ) n n ! = e a + b \sum_{n=0}^{\infty}\sum_{k=0}^{n} \frac{a^{n-k}b^k}{(n-k)!k!} = \sum_{n=0}^{\infty} \frac{(a+b)^n}{n!} = e^{a + b} n = 0 ∑ ∞ k = 0 ∑ n ( n − k )! k ! a n − k b k = n = 0 ∑ ∞ n ! ( a + b ) n = e a + b
and combinatorically rearrange the series to switch from adding the rows to adding the columns via the identity
∑ n = 0 ∞ ∑ k = 0 n f ( n , k ) = ∑ k = 0 ∞ ∑ n = k ∞ f ( n , k ) \sum_{n=0}^{\infty}\sum_{k=0}^{n} f(n,k) = \sum_{k=0}^{\infty}\sum_{n=k}^{\infty} f(n,k) n = 0 ∑ ∞ k = 0 ∑ n f ( n , k ) = k = 0 ∑ ∞ n = k ∑ ∞ f ( n , k )
which holds because both the LHS and RHS are summing over each k , n ∈ N k, n \in \N k , n ∈ N such that k ≤ n k \leq n k ≤ n . Plugging in f ( n , k ) = a n − k b k ( n − k ) ! k ! f(n,k)=\frac{a^{n-k}b^{k}}{(n-k)!k!} f ( n , k ) = ( n − k )! k ! a n − k b k to the identity yields
∑ n = 0 ∞ ∑ k = 0 n a n − k b k ( n − k ) ! k ! = ∑ k = 0 ∞ ∑ n = k ∞ a n − k b k ( n − k ) ! k ! = ∑ k = 0 ∞ b k k ! ∑ n = k ∞ a n − k ( n − k ) ! = ∑ k = 0 ∞ b k k ! ∑ n = 0 ∞ a n n ! = e a ⋅ e b □ \sum_{n=0}^{\infty}\sum_{k=0}^{n} \frac{a^{n-k}b^k}{(n-k)!k!} = \sum_{k=0}^{\infty}\sum_{n=k}^{\infty} \frac{a^{n-k}b^k}{(n-k)!k!} \\
= \sum_{k=0}^{\infty} \frac{b^k}{k!} \sum_{n=k}^{\infty} \frac{a^{n-k}}{(n-k)!} = \sum_{k=0}^{\infty} \frac{b^k}{k!} \sum_{n=0}^{\infty} \frac{a^n}{n!} = e^a \cdot e^b \qquad \square n = 0 ∑ ∞ k = 0 ∑ n ( n − k )! k ! a n − k b k = k = 0 ∑ ∞ n = k ∑ ∞ ( n − k )! k ! a n − k b k = k = 0 ∑ ∞ k ! b k n = k ∑ ∞ ( n − k )! a n − k = k = 0 ∑ ∞ k ! b k n = 0 ∑ ∞ n ! a n = e a ⋅ e b □
(c) \quad \text{(c)} (c) Show that if z z z is purely imaginary, that is, z = i y z = iy z = i y with y ∈ R y \in \R y ∈ R , then
e i y = cos y + i sin y . e^{iy} = \cos y + i \sin y. e i y = cos y + i sin y .
This is Euler's identity. [Hint: Use power series.]
Solution
The general idea is
e i y = ∑ n = 0 ∞ ( i y ) n n ! = 1 + ( i y ) + ( i y ) 2 2 + ( i y ) 3 6 + ⋯ = 1 + i y − y 2 2 − i y 3 6 + ⋯ = ( 1 − y 2 2 + ⋯ ) + ( y − y 3 6 + ⋯ ) i = cos y + i sin y e^{iy} = \sum_{n=0}^{\infty}\frac{(iy)^n}{n!} = 1 + (iy) + \frac{(iy)^2}{2} + \frac{(iy)^3}{6} + \cdots \\
= 1 + iy - \frac{y^2}{2} -\frac{iy^3}{6} + \cdots \\
= (1 - \frac{y^2}{2} + \cdots) + (y - \frac{y^3}{6} + \cdots)i \\
= \cos y + i \sin y e i y = n = 0 ∑ ∞ n ! ( i y ) n = 1 + ( i y ) + 2 ( i y ) 2 + 6 ( i y ) 3 + ⋯ = 1 + i y − 2 y 2 − 6 i y 3 + ⋯ = ( 1 − 2 y 2 + ⋯ ) + ( y − 6 y 3 + ⋯ ) i = cos y + i sin y
More rigorously,
e i y = ∑ n = 0 ∞ ( i y ) n n ! = ∑ n = 0 , n is even ∞ ( i y ) n n ! + ∑ n = 0 , n is odd ∞ ( i y ) n n ! = ∑ n = 0 ∞ ( i y ) 2 n ( 2 n ) ! + ∑ n = 0 ∞ ( i y ) 2 n + 1 ( 2 n + 1 ) ! = ∑ n = 0 ∞ i 2 n ( y ) 2 n ( 2 n ) ! + ∑ n = 0 ∞ i 2 n + 1 ( y ) 2 n + 1 ( 2 n + 1 ) ! = ∑ n = 0 ∞ i 2 n ( y ) 2 n ( 2 n ) ! + i ∑ n = 0 ∞ i 2 n ( y ) 2 n + 1 ( 2 n + 1 ) ! = ∑ n = 0 ∞ ( − 1 ) n ( y ) 2 n ( 2 n ) ! + i ∑ n = 0 ∞ ( − 1 ) n ( y ) 2 n + 1 ( 2 n + 1 ) ! = cos y + i sin y □ e^{iy} = \sum_{n=0}^{\infty}\frac{(iy)^n}{n!} = \sum_{n=0 \text{, } n \text { is even}}^{\infty}\frac{(iy)^n}{n!} + \sum_{n=0 \text{, } n \text{ is odd}}^{\infty}\frac{(iy)^n}{n!} \\
= \sum_{n=0}^{\infty} \frac{(iy)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(iy)^{2n+1}}{(2n+1)!} \\
= \sum_{n=0}^{\infty} \frac{i^{2n}(y)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{i^{2n+1}(y)^{2n+1}}{(2n+1)!} \\
= \sum_{n=0}^{\infty} \frac{i^{2n}(y)^{2n}}{(2n)!} + i\sum_{n=0}^{\infty} \frac{i^{2n}(y)^{2n+1}}{(2n+1)!} \\
= \sum_{n=0}^{\infty} \frac{(-1)^{n}(y)^{2n}}{(2n)!} + i\sum_{n=0}^{\infty} \frac{(-1)^{n}(y)^{2n+1}}{(2n+1)!} \\
= \cos y + i \sin y \quad \square e i y = n = 0 ∑ ∞ n ! ( i y ) n = n = 0 , n is even ∑ ∞ n ! ( i y ) n + n = 0 , n is odd ∑ ∞ n ! ( i y ) n = n = 0 ∑ ∞ ( 2 n )! ( i y ) 2 n + n = 0 ∑ ∞ ( 2 n + 1 )! ( i y ) 2 n + 1 = n = 0 ∑ ∞ ( 2 n )! i 2 n ( y ) 2 n + n = 0 ∑ ∞ ( 2 n + 1 )! i 2 n + 1 ( y ) 2 n + 1 = n = 0 ∑ ∞ ( 2 n )! i 2 n ( y ) 2 n + i n = 0 ∑ ∞ ( 2 n + 1 )! i 2 n ( y ) 2 n + 1 = n = 0 ∑ ∞ ( 2 n )! ( − 1 ) n ( y ) 2 n + i n = 0 ∑ ∞ ( 2 n + 1 )! ( − 1 ) n ( y ) 2 n + 1 = cos y + i sin y □
(d) \quad \text{(d)} (d) More generally,
e x + i y = e x ( cos y + i sin y ) e^{x + iy} = e^x(\cos y + i \sin y) e x + i y = e x ( cos y + i sin y )
whenever x , y ∈ R x, y \in \R x , y ∈ R , and show that
∣ e x + i y ∣ = e x \left| e^{x + iy} \right| = e^{x} e x + i y = e x
Solution
Combining parts (b) \text{(b)} (b) and (c) \text{(c)} (c) gives
e x + i y = e x ⋅ e i y = e x ( cos y + i sin y ) e^{x + iy} = e^x \cdot e^{iy} = e^x ( \cos y + i \sin y) e x + i y = e x ⋅ e i y = e x ( cos y + i sin y )
and we can calculate that
∣ e x + i y ∣ = ∣ e x ( cos y + i sin y ) ∣ = ∣ e x ∣ ∣ cos y + sin y ∣ = e x □ |e^{x + iy}| = |e^x (\cos y + i \sin y)| = |e^x| |\cos y + \sin y| = e^x \quad \square ∣ e x + i y ∣ = ∣ e x ( cos y + i sin y ) ∣ = ∣ e x ∣∣ cos y + sin y ∣ = e x □
(e) \quad \text{(e)} (e) Prove that e z = 1 e^z = 1 e z = 1 if and only if z = 2 π k i z = 2 \pi k i z = 2 πki for some integer k k k .
Solution
Let z = x + i y z = x + iy z = x + i y with x , y ∈ R x, y \in \R x , y ∈ R
1 = e z = e x + i y = e x ( cos y + i sin y ) ⟺ e x cos y = 1 and sin y ⋅ e x = 0 1 = e^z = e^{x+iy} = e^x(\cos y + i \sin y) \\
\iff e^x \cos y = 1 \text{ and } \sin y \cdot e^x = 0 1 = e z = e x + i y = e x ( cos y + i sin y ) ⟺ e x cos y = 1 and sin y ⋅ e x = 0
Remember that x x x and y y y are real so
sin y ⋅ e x = 0 ⟺ sin y = 0 ⟺ y = 2 π k , for some integer k \sin y \cdot e^x = 0 \iff \sin y = 0 \iff y = 2 \pi k \text{, for some integer } k sin y ⋅ e x = 0 ⟺ sin y = 0 ⟺ y = 2 πk , for some integer k
We can now plug in y y y to the other equation to find x x x
e x cos y = 1 ⟺ e x cos 2 π k = 1 ⟺ e x = 1 ⟺ x = 0 e^x \cos y = 1 \iff e^x \cos 2\pi k = 1 \iff e^x = 1 \iff x = 0 e x cos y = 1 ⟺ e x cos 2 πk = 1 ⟺ e x = 1 ⟺ x = 0
So in conclusion
e z = 1 ⟺ y = 2 π k and x = 0 ⟺ z = 2 π k i □ e^z = 1 \iff y = 2 \pi k \text{ and } x = 0 \iff z = 2\pi ki \quad \square e z = 1 ⟺ y = 2 πk and x = 0 ⟺ z = 2 πki □
(f) \quad \text{(f)} (f) Show that every complex number z = x + i y z = x + iy z = x + i y can be written in the form
z = r e i θ , z = r e^{i \theta}, z = r e i θ ,
where r r r is unique and in the range 0 ≤ r < ∞ 0 \leq r < \infty 0 ≤ r < ∞ , and θ ∈ R \theta \in \R θ ∈ R is unique up to an integer multiple of 2 π 2 \pi 2 π . Check that
r = ∣ z ∣ and θ = arctan ( y / x ) r = |z| \quad \text{and} \quad \theta = \arctan(y/x) r = ∣ z ∣ and θ = arctan ( y / x )
whenever these formulas make sense.
Solution
Start by dividing out the radius r = ∣ z ∣ = x 2 + y 2 r = |z| = \sqrt{x^2 + y^2} r = ∣ z ∣ = x 2 + y 2 from z z z ,
z = x + i y z r = x r + i y r z = x + iy \\
\frac{z}{r} = \frac{x}{r} + i \frac{y}{r} \\ z = x + i y r z = r x + i r y
Multiply by r r r but don't cancel on the right hand side,
z = r ( x r + i y r ) z = r \left( \frac{x}{r} + i \frac{y}{r} \right) z = r ( r x + i r y )
Next, consider the following right triangle.
By the diagram and basic trig we have cos θ = x r \cos \theta = \frac{x}{r} cos θ = r x , sin θ = y r \sin \theta \ = \frac{y}{r} sin θ = r y , and θ = arctan ( y / x ) \theta = \arctan (y/x) θ = arctan ( y / x ) . Plugging in,
z = r ⋅ ( cos θ + i sin θ ) = r e i θ □ z = r \cdot ( \cos \theta + i \sin \theta) = re^{i\theta} \quad \square z = r ⋅ ( cos θ + i sin θ ) = r e i θ □
(g) \quad \text{(g)} (g) In particular, i = e i π / 2 i = e^{i \pi / 2} i = e iπ /2 . What is the geometric meaning of multiplying a complex number by i i i ? Or by e i θ e^{i \theta} e i θ for any θ ∈ R \theta \in \R θ ∈ R
Solution
Multiplying by i i i is rotating π / 2 \pi / 2 π /2 radians, in general multipling by e i θ e^{i \theta} e i θ is rotating by θ \theta θ radians.
(h) \quad \text{(h)} (h) Given θ ∈ R \theta \in \R θ ∈ R , show that
cos θ = e i θ + e − i θ 2 and sin θ = e i θ − e − i θ 2 i . \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{and} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}. cos θ = 2 e i θ + e − i θ and sin θ = 2 i e i θ − e − i θ .
There are also called Euler's indentities.
Solution
e i θ = cos θ + i sin θ e − i θ = e i ⋅ ( − θ ) = cos ( − θ ) + i sin ( − θ ) = cos θ − i sin θ e i θ + e − i θ = ( cos θ + i sin θ ) + ( cos θ − i sin θ ) = 2 cos θ cos θ = e i θ + e − i θ 2 e i θ − e − i θ = ( cos θ + i sin θ ) − ( cos θ − i sin θ ) = 2 i sin θ sin θ = e i θ − e − i θ 2 i □ e^{i \theta} = \cos \theta + i \sin \theta \\
e^{-i \theta} = e^{i \cdot (-\theta)} = \cos (-\theta) + i \sin (-\theta) = \cos \theta - i \sin \theta \\
e^{i \theta} + e^{-i\theta} = (\cos \theta + i \sin \theta) + (\cos \theta - i \sin \theta) = 2 \cos \theta \\
\cos \theta = \frac{e^{i \theta} + e^{-i \theta}}{2} \\
e^{i \theta} - e^{-i \theta} = (\cos \theta + i \sin \theta) - (\cos \theta - i \sin \theta) = 2i \sin \theta \\
\sin \theta = \frac{e^{i \theta} - e^{-i\theta}}{2i} \quad \square e i θ = cos θ + i sin θ e − i θ = e i ⋅ ( − θ ) = cos ( − θ ) + i sin ( − θ ) = cos θ − i sin θ e i θ + e − i θ = ( cos θ + i sin θ ) + ( cos θ − i sin θ ) = 2 cos θ cos θ = 2 e i θ + e − i θ e i θ − e − i θ = ( cos θ + i sin θ ) − ( cos θ − i sin θ ) = 2 i sin θ sin θ = 2 i e i θ − e − i θ □
(i) \quad \text{(i)} (i) Use the complex exponential to derive trigonometric identities such as
cos ( θ + ϕ ) = cos θ cos ϕ − sin θ sin ϕ , \cos (\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi, cos ( θ + ϕ ) = cos θ cos ϕ − sin θ sin ϕ ,
and then show that
2 sin θ sin ϕ = cos ( θ − ϕ ) − cos ( θ + ϕ ) , 2 sin θ cos ϕ = sin ( θ + ϕ ) + sin ( θ − ϕ ) . 2 \sin \theta \sin \phi = \cos(\theta - \phi) - \cos(\theta + \phi), \\
2 \sin \theta \cos \phi = \sin(\theta + \phi) + \sin(\theta - \phi). 2 sin θ sin ϕ = cos ( θ − ϕ ) − cos ( θ + ϕ ) , 2 sin θ cos ϕ = sin ( θ + ϕ ) + sin ( θ − ϕ ) .
This calculation connects the solution given by d'Alember in terms of traveling waves and the solution in terms of superposition of standing waves.
Solution
First calculate that
2 cos ( θ + ϕ ) = e i ( θ + ϕ ) + e − i ( θ + ϕ ) = e i θ e i ϕ + e − i θ e − i ϕ = ( cos θ + i sin θ ) ( cos ϕ + i sin ϕ ) + ( cos θ − i sin θ ) ( cos ϕ − i sin ϕ ) = ( cos θ cos ϕ + i cos θ sin ϕ + i sin θ cos ϕ − sin θ sin ϕ ) + ( cos θ cos ϕ − i cos θ sin ϕ − i sin θ cos ϕ − sin θ sin ϕ ) = 2 cos θ cos ϕ − 2 sin θ sin ϕ □ \begin{aligned}
&2 \cos(\theta + \phi)\\
&= e^{i(\theta + \phi)} + e^{-i(\theta + \phi)} = e^{i\theta}e^{i\phi} + e^{-i\theta}e^{-i\phi} \\
&= (\cos \theta + i \sin \theta) (\cos \phi + i \sin \phi) + (\cos \theta - i \sin \theta)(\cos \phi - i \sin \phi) \\
&= (\cos\theta \cos\phi + i \cos\theta \sin\phi + i \sin \theta \cos \phi - \sin \theta \sin \phi) \\
&+ (\cos \theta \cos \phi - i \cos \theta \sin \phi - i \sin \theta \cos \phi - \sin \theta \sin \phi) \\
&= 2 \cos \theta \cos \phi - 2 \sin \theta \sin \phi \quad \square
\end{aligned} 2 cos ( θ + ϕ ) = e i ( θ + ϕ ) + e − i ( θ + ϕ ) = e i θ e i ϕ + e − i θ e − i ϕ = ( cos θ + i sin θ ) ( cos ϕ + i sin ϕ ) + ( cos θ − i sin θ ) ( cos ϕ − i sin ϕ ) = ( cos θ cos ϕ + i cos θ sin ϕ + i sin θ cos ϕ − sin θ sin ϕ ) + ( cos θ cos ϕ − i cos θ sin ϕ − i sin θ cos ϕ − sin θ sin ϕ ) = 2 cos θ cos ϕ − 2 sin θ sin ϕ □
Using this formula
cos ( θ − ϕ ) − cos ( θ + ϕ ) = cos ( θ + ( − ϕ ) ) − cos ( θ + ϕ ) = ( cos θ cos ( − ϕ ) − sin θ sin ( − ϕ ) ) − ( cos θ cos ϕ − sin θ sin ϕ ) = cos θ cos ϕ + sin θ sin ϕ − cos θ cos ϕ + sin θ sin ϕ = 2 sin θ sin ϕ □ \begin{aligned}
&\cos(\theta - \phi) - \cos(\theta + \phi) \\
&= \cos(\theta + (-\phi)) - \cos(\theta + \phi) \\
&= (\cos \theta \cos (- \phi) - \sin \theta \sin (-\phi)) - (\cos \theta \cos \phi - \sin \theta \sin \phi) \\
&= \cos \theta \cos \phi + \sin \theta \sin \phi - \cos \theta \cos \phi + \sin \theta \sin \phi \\
&= 2 \sin \theta \sin \phi \quad \square
\end{aligned} cos ( θ − ϕ ) − cos ( θ + ϕ ) = cos ( θ + ( − ϕ )) − cos ( θ + ϕ ) = ( cos θ cos ( − ϕ ) − sin θ sin ( − ϕ )) − ( cos θ cos ϕ − sin θ sin ϕ ) = cos θ cos ϕ + sin θ sin ϕ − cos θ cos ϕ + sin θ sin ϕ = 2 sin θ sin ϕ □
Now let's calculate sine's angle addition formula
2 i sin ( θ + ϕ ) = e i ( θ + ϕ ) − e − i ( θ + ϕ ) = e i θ e i ϕ − e i ( − θ ) e i ( − ϕ ) = ( cos θ cos ϕ + i cos θ sin ϕ + i sin θ cos ϕ − sin θ sin ϕ ) − ( cos θ cos ϕ − i cos θ sin ϕ − i sin θ cos ϕ − sin θ sin ϕ ) = 2 i cos θ sin ϕ + 2 i sin θ cos ϕ sin ( θ + ϕ ) = cos θ sin ϕ + sin θ cos ϕ \begin{aligned}
&2i \sin(\theta + \phi) \\
&= e^{i (\theta + \phi)} - e^{-i (\theta + \phi)} = e^{i\theta}e^{i\phi} - e^{i(-\theta)}e^{i(-\phi)} \\
&= (\cos \theta \cos \phi + i \cos \theta \sin \phi + i \sin \theta \cos \phi - \sin \theta \sin \phi) \\
&- (\cos \theta \cos \phi - i \cos \theta \sin \phi - i \sin \theta \cos \phi - \sin \theta \sin \phi) \\
&= 2i \cos \theta \sin \phi + 2i\sin \theta \cos \phi \\
\end{aligned} \\
\sin(\theta + \phi) = \cos \theta \sin \phi + \sin \theta \cos \phi 2 i sin ( θ + ϕ ) = e i ( θ + ϕ ) − e − i ( θ + ϕ ) = e i θ e i ϕ − e i ( − θ ) e i ( − ϕ ) = ( cos θ cos ϕ + i cos θ sin ϕ + i sin θ cos ϕ − sin θ sin ϕ ) − ( cos θ cos ϕ − i cos θ sin ϕ − i sin θ cos ϕ − sin θ sin ϕ ) = 2 i cos θ sin ϕ + 2 i sin θ cos ϕ sin ( θ + ϕ ) = cos θ sin ϕ + sin θ cos ϕ
We can now solve the last identity
sin ( θ + ϕ ) + sin ( θ − ϕ ) = ( cos θ sin ϕ + sin θ cos ϕ ) + ( cos θ sin ( − ϕ ) + sin θ cos ( − ϕ ) ) = ( cos θ sin ϕ + sin θ cos ϕ ) + ( − cos θ sin ϕ + sin θ cos ϕ ) = 2 sin θ cos ϕ □ \begin{aligned}
&\sin(\theta + \phi) + \sin(\theta - \phi) \\
&= (\cos \theta \sin \phi + \sin \theta \cos \phi) + (\cos \theta \sin (-\phi) + \sin \theta \cos (-\phi)) \\
&= (\cos \theta \sin \phi + \sin \theta \cos \phi) + (-\cos \theta \sin \phi + \sin \theta \cos \phi) \\
&= 2\sin \theta \cos \phi \quad \square
\end{aligned} sin ( θ + ϕ ) + sin ( θ − ϕ ) = ( cos θ sin ϕ + sin θ cos ϕ ) + ( cos θ sin ( − ϕ ) + sin θ cos ( − ϕ )) = ( cos θ sin ϕ + sin θ cos ϕ ) + ( − cos θ sin ϕ + sin θ cos ϕ ) = 2 sin θ cos ϕ □
5. Verify that f ( x ) = e i n x f(x) = e^{inx} f ( x ) = e in x is periodic with period 2 π 2 \pi 2 π and that
1 2 π ∫ − π π e i n x d x = { 1 if n = 0 , 0 if n ≠ 0. \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} \, dx = \begin{cases}
1 \quad \text{if } n = 0, \\
0 \quad \text{if } n \neq 0.
\end{cases} 2 π 1 ∫ − π π e in x d x = { 1 if n = 0 , 0 if n = 0.
Use this fact to prove that if n , m ≥ 1 n, m \geq 1 n , m ≥ 1 we have
1 π ∫ − π π cos n x cos m x d x = { 0 if n ≠ m , 1 if n = m , \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nx \cos mx \, dx = \begin{cases}
0 \quad \text{if } n \neq m, \\
1 \quad \text{if } n = m,
\end{cases} π 1 ∫ − π π cos n x cos m x d x = { 0 if n = m , 1 if n = m ,
and similarly
1 π ∫ − π π sin n x sin m x d x = { 0 if n ≠ m , 1 if n = m . \frac{1}{\pi} \int_{-\pi}^{\pi} \sin nx \sin mx \, dx =
\begin{cases}
0 \quad \text{if } n \neq m, \\
1 \quad \text{if } n = m.
\end{cases} π 1 ∫ − π π sin n x sin m x d x = { 0 if n = m , 1 if n = m .
Finally, show that
∫ − π π sin n x cos m x d x = 0 for any n , m . \int_{-\pi}^{\pi} \sin nx \cos mx \, dx = 0 \quad \text{for any } n, m. ∫ − π π sin n x cos m x d x = 0 for any n , m .
[Hint: Calculate e i n x e − i m x + e i n x e i m x e^{inx}e^{-imx} + e^{inx}e^{imx} e in x e − im x + e in x e im x and e i n x e − i m x − e i n x e i m x e^{inx}e^{-imx} - e^{inx}e^{imx} e in x e − im x − e in x e im x .]
Solution
First we need to show that f ( x ) = e i n x f(x) = e^{inx} f ( x ) = e in x is periodic with period 2 π 2 \pi 2 π . Plug in and use 4 ( b ) 4(\text{b}) 4 ( b ) to get
f ( x + 2 π ) = e i n ( x + 2 π ) = e i n x + 2 π i n = f ( x ) e 2 π i n . (1) \tag{1} f(x + 2\pi) = e^{in(x + 2\pi)} = e^{inx + 2\pi in} = f(x)e^{2\pi in}. f ( x + 2 π ) = e in ( x + 2 π ) = e in x + 2 πin = f ( x ) e 2 πin . ( 1 )
By Euler's identity ( 4 ( c ) ) \left(4 (\text{c})\right) ( 4 ( c ) )
e 2 π i n = cos ( 2 π n ) + i sin ( 2 π n ) = 1 , e^{2\pi i n} = \cos(2\pi n) + i \sin(2\pi n) = 1, e 2 πin = cos ( 2 πn ) + i sin ( 2 πn ) = 1 ,
plugging this into ( 1 ) (1) ( 1 ) gives
f ( x + 2 π ) = f ( x ) , f(x + 2 \pi) = f(x), f ( x + 2 π ) = f ( x ) ,
so by definition f f f is periodic with period 2 π 2 \pi 2 π .
Next we need to show that
1 2 π ∫ − π π e i n x d x = { 1 if n = 0 , 0 if n ≠ 0. (2) \tag{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} \, dx = \begin{cases}
1 \quad \text{if } n = 0, \\
0 \quad \text{if } n \neq 0.
\end{cases} 2 π 1 ∫ − π π e in x d x = { 1 if n = 0 , 0 if n = 0. ( 2 )
Calculate that
∫ − π π e i n x d x = ∫ − π π cos ( n x ) + i sin ( n x ) d x = ∫ − π π cos ( n x ) d x + i ∫ − π π sin ( n x ) d x \int_{-\pi}^{\pi} e^{inx} \, dx = \int_{-\pi}^{\pi} \cos(nx) + i \sin(nx) \, dx \\
= \int_{-\pi}^{\pi} \cos(nx) \, dx + i \int_{-\pi}^{\pi} \sin(nx) \, dx ∫ − π π e in x d x = ∫ − π π cos ( n x ) + i sin ( n x ) d x = ∫ − π π cos ( n x ) d x + i ∫ − π π sin ( n x ) d x
If n ≠ 0 n \neq 0 n = 0 then
= sin ( n x ) n ∣ − π π − i cos ( n x ) n ∣ − π π = sin ( n π ) − sin ( − n π ) n − i cos ( n π ) − cos ( − n π ) n = 0 , = \left. \frac{\sin(nx)}{n} \right|_{-\pi}^{\pi} - i \left. \frac{\cos(nx)}{n} \right|_{-\pi}^{\pi} \\[4px]
= \frac{\sin(n\pi) - \sin(-n\pi)}{n} - i \frac{\cos(n\pi) - \cos(-n\pi)}{n} = 0, = n sin ( n x ) − π π − i n cos ( n x ) − π π = n sin ( nπ ) − sin ( − nπ ) − i n cos ( nπ ) − cos ( − nπ ) = 0 ,
the last equality following from sin ( n π ) = 0 \sin(n\pi) = 0 sin ( nπ ) = 0 and cos ( x ) = cos ( − x ) \cos(x) = \cos(-x) cos ( x ) = cos ( − x ) .
The case of n = 0 n=0 n = 0 is trivial because e i n x = 1 e^{inx} = 1 e in x = 1 .
Next we need to show that if n , m ≥ 1 n, m \geq 1 n , m ≥ 1 then
1 π ∫ − π π cos n x cos m x d x = { 0 if n ≠ m 1 if n = m . \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nx \cos mx \, dx =
\begin{cases}
0 \quad \text{if } n \neq m \\
1 \quad \text{if } n = m.
\end{cases} π 1 ∫ − π π cos n x cos m x d x = { 0 if n = m 1 if n = m .
Using the hint,
e i n x e − i m x + e i n x e i m x = ( cos ( n x ) + i sin ( n x ) ) ( cos ( − m x ) + i sin ( − m x ) ) + ( cos ( n x ) + i sin ( n x ) ) ( cos ( m x ) + i sin ( m x ) ) = ( cos n x cos m x − i cos n x sin m x + i sin n x cos m x + sin n x sin m x ) + ( cos n x cos m x + i cos n x sin m x + i sin n x cos m x − sin n x sin m x ) = 2 cos n x cos m x + 2 i sin n x cos m x , e^{inx}e^{-imx} + e^{inx}e^{imx} \\
= (\cos(nx) + i \sin(nx))(\cos(-mx) + i \sin(-mx)) \\ + (\cos(nx) + i\sin(nx))(\cos(mx) + i \sin(mx)) \\
= (\cos nx \cos mx - i\cos nx \sin mx + i\sin nx\cos mx + \sin nx \sin mx ) \\ + ( \cos nx \cos mx + i \cos nx \sin mx + i \sin nx \cos mx - \sin nx \sin mx ) \\
= 2\cos nx \cos mx + 2i \sin nx \cos mx, e in x e − im x + e in x e im x = ( cos ( n x ) + i sin ( n x )) ( cos ( − m x ) + i sin ( − m x )) + ( cos ( n x ) + i sin ( n x )) ( cos ( m x ) + i sin ( m x )) = ( cos n x cos m x − i cos n x sin m x + i sin n x cos m x + sin n x sin m x ) + ( cos n x cos m x + i cos n x sin m x + i sin n x cos m x − sin n x sin m x ) = 2 cos n x cos m x + 2 i sin n x cos m x ,
and similarly
e i n x e − i m x − e i n x e i m x = 2 sin n x sin m x − 2 i cos n x sin m x . e^{inx}e^{-imx} - e^{inx}e^{imx} = 2 \sin nx \sin mx - 2i \cos nx \sin mx. e in x e − im x − e in x e im x = 2 sin n x sin m x − 2 i cos n x sin m x .
Integrate both sides to get
∫ − π π e i ( n − m ) x d x + ∫ − π π e i ( n + m ) x d x = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x , \int_{-\pi}^{\pi} e^{i(n-m)x} \, dx + \int_{-\pi}^{\pi} e^{i(n+m)x} \, dx \\
= 2\int_{-\pi}^{\pi} \cos nx \cos mx \, dx + 2i\int_{-\pi}^{\pi} \sin nx \cos mx \, dx, ∫ − π π e i ( n − m ) x d x + ∫ − π π e i ( n + m ) x d x = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x ,
and similarly
∫ − π π e i ( n − m ) x d x − ∫ − π π e i ( n + m ) x d x = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x . \int_{-\pi}^{\pi} e^{i(n-m)x} \, dx - \int_{-\pi}^{\pi} e^{i(n+m)x} \, dx \\
= 2\int_{-\pi}^{\pi} \sin nx \sin mx \, dx - 2i\int_{-\pi}^{\pi} \cos nx \sin mx \, dx. ∫ − π π e i ( n − m ) x d x − ∫ − π π e i ( n + m ) x d x = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x .
If n = m n = m n = m then of course n − m = 0 n - m = 0 n − m = 0 , so we can plug into ( 2 ) (2) ( 2 ) to get
2 π = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x 2 \pi = 2\int_{-\pi}^{\pi} \cos nx \cos mx \, dx + 2i\int_{-\pi}^{\pi} \sin nx \cos mx \, dx 2 π = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x
and similarly
2 π = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x . 2 \pi = 2\int_{-\pi}^{\pi} \sin nx \sin mx \, dx - 2i\int_{-\pi}^{\pi} \cos nx \sin mx \, dx. 2 π = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x .
If n ≠ m n \neq m n = m then we get
0 = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x , 0 = 2\int_{-\pi}^{\pi} \cos nx \cos mx \, dx + 2i\int_{-\pi}^{\pi} \sin nx \cos mx \, dx, 0 = 2 ∫ − π π cos n x cos m x d x + 2 i ∫ − π π sin n x cos m x d x ,
and similarly
0 = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x . 0 = 2\int_{-\pi}^{\pi} \sin nx \sin mx \, dx - 2i\int_{-\pi}^{\pi} \cos nx \sin mx \, dx. 0 = 2 ∫ − π π sin n x sin m x d x − 2 i ∫ − π π cos n x sin m x d x .
The result follows from equating real and imaginary parts. □ \quad \square □
6. Prove that if f f f is a twice continuously differentiable function on R \R R which is a solution of the equation
f ′ ′ ( t ) + c 2 f ( t ) = 0 , f''(t) + c^2f(t) = 0, f ′′ ( t ) + c 2 f ( t ) = 0 ,
then there exist constants a a a and b b b such that
f ( t ) = a cos c t + b sin c t . f(t) = a \cos ct + b \sin ct. f ( t ) = a cos c t + b sin c t .
This can be done by differentiating the two functions g ( t ) = f ( t ) cos c t − c − 1 f ′ ( t ) sin c t g(t) = f(t) \cos ct - c^{-1}f'(t)\sin ct g ( t ) = f ( t ) cos c t − c − 1 f ′ ( t ) sin c t and h ( t ) = f ( t ) sin c t + c − 1 f ′ ( t ) cos c t h(t) = f(t) \sin ct + c^{-1}f'(t)\cos ct h ( t ) = f ( t ) sin c t + c − 1 f ′ ( t ) cos c t .
Solution
Let's start by following the hint. First we differentiate g ( t ) g(t) g ( t ) ,
g ′ ( t ) = d d t [ f ( t ) cos c t ] − c − 1 d d t [ f ′ ( t ) sin c t ] = ( f ′ ( t ) cos c t + f ( t ) ⋅ − c sin c t ) − c − 1 ( f ′ ′ ( t ) sin c t + f ′ ( t ) ⋅ c cos c t ) = ( f ′ ( t ) cos c t − c f ( t ) sin c t ) − c − 1 ( − c 2 f ( t ) sin c t + c f ′ ( t ) cos c t ) = f ′ ( t ) cos c t − c f ( t ) sin c t + c f ( t ) sin c t − f ′ ( t ) cos c t = 0. g'(t) = \frac{d}{dt} \left[ f(t)\cos ct \right] - c^{-1}\frac{d}{dt} \left[ f'(t) \sin ct \right] \\[4px]
= \left(f'(t)\cos ct + f(t) \cdot -c\sin ct\right) - c^{-1}\left(f''(t)\sin ct + f'(t) \cdot c \cos ct\right) \\
= \left(f'(t)\cos ct - c f(t) \sin ct \right) - c^{-1} \left( -c^2 f(t) \sin ct + cf'(t) \cos ct \right) \\
= f'(t) \cos ct - c f(t) \sin ct + c f(t) \sin ct -f'(t) \cos ct = 0. g ′ ( t ) = d t d [ f ( t ) cos c t ] − c − 1 d t d [ f ′ ( t ) sin c t ] = ( f ′ ( t ) cos c t + f ( t ) ⋅ − c sin c t ) − c − 1 ( f ′′ ( t ) sin c t + f ′ ( t ) ⋅ c cos c t ) = ( f ′ ( t ) cos c t − c f ( t ) sin c t ) − c − 1 ( − c 2 f ( t ) sin c t + c f ′ ( t ) cos c t ) = f ′ ( t ) cos c t − c f ( t ) sin c t + c f ( t ) sin c t − f ′ ( t ) cos c t = 0.
Then we differentiate h ( t ) h(t) h ( t ) ,
h ′ ( t ) = d d t [ f ( t ) sin c t ] + c − 1 d d t [ f ′ ( t ) cos c t ] = ( f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t ) + c − 1 ( f ′ ′ ( t ) cos c t + f ′ ( t ) ⋅ ( − c ) ⋅ sin c t ) = ( f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t ) + c − 1 ( − c 2 f ( t ) cos c t + f ′ ( t ) ⋅ ( − c ) ⋅ sin c t ) = f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t − c f ( t ) cos c t − f ′ ( t ) ⋅ sin c t = 0. h'(t) = \frac{d}{dt} \left[ f(t) \sin ct \right] + c^{-1} \frac{d}{dt} \left[ f'(t) \cos ct \right] \\
= \left(f'(t) \sin ct + f(t) \cdot c \cdot \cos ct \right) + c^{-1}\left( f''(t) \cos ct + f'(t) \cdot (-c) \cdot \sin ct \right) \\
= \left(f'(t) \sin ct + f(t) \cdot c \cdot \cos ct \right) + c^{-1}\left( -c^2 f(t) \cos ct + f'(t) \cdot (-c) \cdot \sin ct \right) \\
= f'(t) \sin ct + f(t) \cdot c \cdot \cos ct - c f(t) \cos ct - f'(t) \cdot \sin ct = 0. \\ h ′ ( t ) = d t d [ f ( t ) sin c t ] + c − 1 d t d [ f ′ ( t ) cos c t ] = ( f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t ) + c − 1 ( f ′′ ( t ) cos c t + f ′ ( t ) ⋅ ( − c ) ⋅ sin c t ) = ( f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t ) + c − 1 ( − c 2 f ( t ) cos c t + f ′ ( t ) ⋅ ( − c ) ⋅ sin c t ) = f ′ ( t ) sin c t + f ( t ) ⋅ c ⋅ cos c t − c f ( t ) cos c t − f ′ ( t ) ⋅ sin c t = 0.
Therefore there exist constants a a a and b b b such that
g ( t ) = a , h ( t ) = b f ( t ) cos c t − c − 1 f ′ ( t ) sin c t = a , f ( t ) sin c t + c − 1 f ′ ( t ) cos c t = b c − 1 f ′ ( t ) sin c t = f ( t ) cos c t − a , f ( t ) = b − c − 1 f ′ ( t ) cos c t sin c t g(t) = a, \quad h(t) = b \\
f(t) \cos ct - c^{-1}f'(t)\sin ct = a, \quad f(t) \sin ct + c^{-1}f'(t)\cos ct = b \\[4px]
c^{-1}f'(t) \sin ct = f(t) \cos ct - a, \quad f(t) = \frac{b - c^{-1}f'(t)\cos ct}{\sin ct} g ( t ) = a , h ( t ) = b f ( t ) cos c t − c − 1 f ′ ( t ) sin c t = a , f ( t ) sin c t + c − 1 f ′ ( t ) cos c t = b c − 1 f ′ ( t ) sin c t = f ( t ) cos c t − a , f ( t ) = sin c t b − c − 1 f ′ ( t ) cos c t
Plug the right into the left
c − 1 f ′ ( t ) sin c t = b − c − 1 f ′ ( t ) cos c t sin c t cos c t − a c − 1 f ′ ( t ) sin 2 c t = b cos c t − c − 1 f ′ ( t ) cos 2 c t − a sin c t c − 1 f ′ ( t ) sin 2 c t + c − 1 f ′ ( t ) cos 2 c t = b cos c t − a sin c t c − 1 f ′ ( t ) ( sin 2 c t + cos 2 c t ) = b cos c t − a sin c t c − 1 f ′ ( t ) = b cos c t − a sin c t f ′ ( t ) = c b cos c t − c a sin c t ∫ 0 t f ′ ( τ ) d τ = b ∫ 0 t c cos c τ d τ − a ∫ 0 t c sin c τ d τ f ( t ) − f ( 0 ) = b sin c τ ∣ 0 t + a cos c τ ∣ 0 t f ( t ) − f ( 0 ) = b sin c t + a cos c t − a c^{-1}f'(t)\sin ct = \frac{b - c^{-1}f'(t)\cos ct}{\sin ct}\cos ct - a \\[4px]
c^{-1}f'(t)\sin^2 ct = b\cos ct - c^{-1}f'(t) \cos^2 ct - a \sin ct \\
c^{-1}f'(t)\sin^2 ct + c^{-1}f'(t) \cos^2 ct = b\cos ct - a \sin ct \\
c^{-1}f'(t) (\sin^2 ct + \cos^2 ct) = b\cos ct - a \sin ct \\
c^{-1}f'(t) = b\cos ct - a \sin ct \\
f'(t) = cb\cos ct - ca \sin ct \\
\int_{0}^{t} f'(\tau) \, d\tau = b \int_{0}^{t}c \cos c\tau \, d\tau - a \int_{0}^{t} c \sin c \tau \, d\tau \\
f(t) - f(0) = b\left.\sin c\tau \right|_{0}^{t} + \left.a \cos c \tau \right|_{0}^{t} \\
f(t) - f(0) = b \sin ct + a \cos ct - a c − 1 f ′ ( t ) sin c t = sin c t b − c − 1 f ′ ( t ) cos c t cos c t − a c − 1 f ′ ( t ) sin 2 c t = b cos c t − c − 1 f ′ ( t ) cos 2 c t − a sin c t c − 1 f ′ ( t ) sin 2 c t + c − 1 f ′ ( t ) cos 2 c t = b cos c t − a sin c t c − 1 f ′ ( t ) ( sin 2 c t + cos 2 c t ) = b cos c t − a sin c t c − 1 f ′ ( t ) = b cos c t − a sin c t f ′ ( t ) = c b cos c t − c a sin c t ∫ 0 t f ′ ( τ ) d τ = b ∫ 0 t c cos c τ d τ − a ∫ 0 t c sin c τ d τ f ( t ) − f ( 0 ) = b sin c τ ∣ 0 t + a cos c τ ∣ 0 t f ( t ) − f ( 0 ) = b sin c t + a cos c t − a
It suffices to show that
f ( 0 ) = a f(0) = a f ( 0 ) = a
We know that
f ( π 2 c ) = b − c − 1 f ′ ( t ) cos π 2 sin π 2 = b f\left(\frac{\pi}{2c}\right) = \frac{b - c^{-1}f'(t)\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}} = b f ( 2 c π ) = sin 2 π b − c − 1 f ′ ( t ) cos 2 π = b
We can plug this in to get
f ( π 2 c ) − f ( 0 ) = b sin π 2 + a cos π 2 − a = b − a f ( 0 ) = a □ f\left(\frac{\pi}{2c}\right) - f(0) = b \sin \frac{\pi}{2} + a \cos \frac{\pi}{2} - a = b-a \\
f(0) = a \quad \square f ( 2 c π ) − f ( 0 ) = b sin 2 π + a cos 2 π − a = b − a f ( 0 ) = a □
7. Show that if a a a and b b b are real, then one can write
a cos c t + b sin c t = A cos ( c t − ϕ ) , a \cos ct + b \sin ct = A \cos (ct - \phi), a cos c t + b sin c t = A cos ( c t − ϕ ) ,
where A = a 2 + b 2 A = \sqrt{a^2 + b^2} A = a 2 + b 2 , and ϕ \phi ϕ is chosen so that
cos ϕ = a a 2 + b 2 and sin ϕ = b a 2 + b 2 . \cos \phi = \frac{a}{\sqrt{a^2+b^2}} \quad \text{and} \quad \sin \phi = \frac{b}{\sqrt{a^2+b^2}}. cos ϕ = a 2 + b 2 a and sin ϕ = a 2 + b 2 b .
Solution
First use the cosine angle addition formula from 4 ( i ) 4(i) 4 ( i ) to calculate that
cos ( c t − ϕ ) = cos ( c t ) cos ( − ϕ ) − sin ( c t ) sin ( − ϕ ) = cos c t cos ϕ + sin c t sin ϕ . \begin{aligned}
\cos (ct - \phi) &= \cos(ct) \cos (-\phi) - \sin(ct) \sin(-\phi) \\
&= \cos ct \cos \phi + \sin ct \sin \phi.
\end{aligned} cos ( c t − ϕ ) = cos ( c t ) cos ( − ϕ ) − sin ( c t ) sin ( − ϕ ) = cos c t cos ϕ + sin c t sin ϕ .
Using the following right triangle
we can choose ϕ \phi ϕ such that cos ϕ = a a 2 + b 2 \cos \phi = \frac{a}{\sqrt{a^2+b^2}} cos ϕ = a 2 + b 2 a and sin ϕ = b a 2 + b 2 \sin \phi = \frac{b}{\sqrt{a^2+b^2}} sin ϕ = a 2 + b 2 b . Plugging in,
cos ( c t − ϕ ) = a a 2 + b 2 cos c t + b a 2 + b 2 sin c t \cos(ct - \phi) = \frac{a}{\sqrt{a^2+b^2}} \cos ct + \frac{b}{\sqrt{a^2+b^2}} \sin ct cos ( c t − ϕ ) = a 2 + b 2 a cos c t + a 2 + b 2 b sin c t
Multiply both sides by A = a 2 + b 2 A = \sqrt{a^2+b^2} A = a 2 + b 2 to get the desired result,
A cos ( c t − ϕ ) = a cos c t + b sin c t . □ A\cos(ct - \phi) = a \cos ct + b \sin ct. \quad \square A cos ( c t − ϕ ) = a cos c t + b sin c t . □
8. Suppose F F F is a function on ( a , b ) (a,b) ( a , b ) with two continuous derivatives. Show that whenever x x x and x + h x + h x + h belong to ( a , b ) (a,b) ( a , b ) , one may write
F ( x + h ) = F ( x ) + h F ′ ( x ) + h 2 2 F ′ ′ ( x ) + h 2 φ ( h ) , F(x+h) = F(x) + hF'(x) + \frac{h^2}{2}F''(x) + h^2\varphi (h), F ( x + h ) = F ( x ) + h F ′ ( x ) + 2 h 2 F ′′ ( x ) + h 2 φ ( h ) ,
where φ ( h ) → 0 \varphi(h) \to 0 φ ( h ) → 0 as h → 0 h \to 0 h → 0 .
Deduce that
F ( x + h ) + F ( x − h ) − 2 F ( x ) h 2 → F ′ ′ ( x ) as h → 0. \frac{F(x+h) + F(x-h) - 2F(x)}{h^2} \to F''(x) \quad \text{as } h \to 0. h 2 F ( x + h ) + F ( x − h ) − 2 F ( x ) → F ′′ ( x ) as h → 0.
Hint : This is simply a Taylor expansion. It may be obtained by noting that
F ( x + h ) − F ( x ) = ∫ x x + h F ′ ( y ) d y , F(x+h) - F(x) = \int_{x}^{x+h} F'(y) \, dy, F ( x + h ) − F ( x ) = ∫ x x + h F ′ ( y ) d y ,
and then writing F ′ ( y ) = F ′ ( x ) + ( y − x ) F ′ ′ ( x ) + ( y − x ) ψ ( y − x ) F'(y) = F'(x) + (y-x)F''(x) + (y-x)\psi(y-x) F ′ ( y ) = F ′ ( x ) + ( y − x ) F ′′ ( x ) + ( y − x ) ψ ( y − x ) , where ψ ( h ) → 0 \psi(h) \to 0 ψ ( h ) → 0 as h → 0 h \to 0 h → 0 .
9. In the case of the plucked string, use the formula for the Fourier sine coefficients to show that
A m = 2 h m 2 sin m p p ( π − p ) . A_m = \frac{2h}{m^2} \frac{\sin mp}{p(\pi - p)}. A m = m 2 2 h p ( π − p ) sin m p .
For what position of p p p are the second, fourth, … \dots … harmonics missing? For what position of p p p are the third, sixth, … \dots … harmonics missing?
10. Show that the expression of the Laplacian
△ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 \triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} △ = ∂ x 2 ∂ 2 + ∂ y 2 ∂ 2
is given in polar coordinates by the formula
△ = ∂ 2 ∂ r 2 + 1 r ∂ ∂ r + 1 r 2 ∂ 2 ∂ θ 2 . \triangle = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}. △ = ∂ r 2 ∂ 2 + r 1 ∂ r ∂ + r 2 1 ∂ θ 2 ∂ 2 .
Also, prove that
∣ ∂ u ∂ x ∣ 2 + ∣ ∂ u ∂ y ∣ 2 = ∣ ∂ u ∂ r ∣ 2 + 1 r 2 ∣ ∂ u ∂ θ ∣ 2 . \left|\frac{\partial u}{\partial x}\right|^2 + \left| \frac{\partial u}{\partial y} \right|^2 = \left| \frac{\partial u}{\partial r} \right|^2 + \frac{1}{r^2} \left| \frac{\partial u}{\partial \theta} \right|^2 . ∂ x ∂ u 2 + ∂ y ∂ u 2 = ∂ r ∂ u 2 + r 2 1 ∂ θ ∂ u 2 .
11. Show that if n ∈ Z n \in \Z n ∈ Z the only solutions of the differential equation
r 2 F ′ ′ ( r ) + r F ′ ( r ) − n 2 F ( r ) = 0 , r^2 F''(r) + rF'(r) - n^2F(r) = 0, r 2 F ′′ ( r ) + r F ′ ( r ) − n 2 F ( r ) = 0 ,
which are twice differentiable when r > 0 r > 0 r > 0 , are given by linear combinations of r n r^n r n and r − n r^{-n} r − n when n ≠ 0 n \neq 0 n = 0 , and 1 1 1 and log r \log r log r when n = 0 n = 0 n = 0 .
Hint : If F F F solves the equation, write F ( r ) = g ( r ) r n F(r) = g(r)r^n F ( r ) = g ( r ) r n , find the equation satisfied by g g g , and conclude that r g ′ ( r ) + 2 n g ( r ) = c rg'(r) + 2ng(r) = c r g ′ ( r ) + 2 n g ( r ) = c where c c c is a constant.
0
u
=0
u
=
f
0
u
=0
1
u
=
f
1
u
=0
π
Problem
1. Consider the Dirichlet problem illustrated above.
More precisely, we look for a solution of the steady-state heat equation △ u = 0 \triangle u = 0 △ u = 0 in the rectangle R = { ( x , y ) : 0 ≤ x ≤ π , 0 ≤ y ≤ 1 } R = \{(x,y): 0 \leq x \leq \pi, 0 \leq y \leq 1 \} R = {( x , y ) : 0 ≤ x ≤ π , 0 ≤ y ≤ 1 } that vanishes on the vertical sides of R R R , and so that
u ( x , 0 ) = f 0 ( x ) and u ( x , 1 ) = f 1 ( x ) , u(x,0) = f_0(x) \quad \text{and} \quad u(x,1) = f_1(x), u ( x , 0 ) = f 0 ( x ) and u ( x , 1 ) = f 1 ( x ) ,
where f 0 f_0 f 0 and f 1 f_1 f 1 are the initial data which fix the temperature distribution on the horizontal sides of the rectangle.
Use separation of variables to show that if f 0 f_0 f 0 and f 1 f_1 f 1 have Fourier expansions
f 0 ( x ) = ∑ k = 1 ∞ A k sin k x and f 1 ( x ) = ∑ k = 1 ∞ B k sin k x , f_0(x) = \sum_{k=1}^{\infty} A_k \sin kx \quad \text{and} \quad f_1(x) = \sum_{k=1}^{\infty} B_k \sin kx, f 0 ( x ) = k = 1 ∑ ∞ A k sin k x and f 1 ( x ) = k = 1 ∑ ∞ B k sin k x ,
then
u ( x , y ) = ∑ k = 1 ∞ ( sinh k ( 1 − y ) sinh k A k + sinh k y sinh k B k ) sin k x . u(x,y) = \sum_{k=1}^{\infty} \left( \frac{\sinh k(1-y)}{\sinh k}A_k + \frac{\sinh ky}{\sinh k}B_k \right) \sin kx. u ( x , y ) = k = 1 ∑ ∞ ( sinh k sinh k ( 1 − y ) A k + sinh k sinh k y B k ) sin k x .
We recall the definitions of the hyperbolic sine and cosine functions:
sinh x = e x − e − x 2 and cosh x = e x + e − x 2 . \sinh x = \frac{e^x - e^{-x}}{2} \quad \text{and} \quad \cosh x = \frac{e^x + e^{-x}}{2}. sinh x = 2 e x − e − x and cosh x = 2 e x + e − x .
Compare this result with the solution of the Dirichlet problem in the strip obtained in Problem 3, Chapter 5.
\\