Princeton Lectures in Analysis I - Fourier Analysis: An Introduction

Chapter II - Basic Properties of Fourier Series

Exercises

1.\textbf{1.} \> Suppose ff is 2π2 \pi-periodic and integrable on any finite interval. Prove that if a,bRa,b \in \R, then

abf(x)dx=a+2πb+2πf(x)dx=a2πb2πf(x)dx.\int_{a}^{b} f(x) \, dx = \int_{a+2\pi}^{b+2\pi} f(x) \, dx = \int_{a-2\pi}^{b-2\pi} f(x) \, dx.

Also prove that

ππf(x+a)dx=ππf(x)dx=π+aπ+af(x)dx.\int_{-\pi}^{\pi} f(x+a) \, dx = \int_{-\pi}^{\pi} f(x) \, dx = \int_{-\pi + a}^{\pi + a} f(x) \, dx.


2.\textbf{2.} \> In this exercise we show how the symmetries of a function imply certain properties of its Fourier coefficients. Let ff be a 2π2 \pi-periodic Riemann integrable function defined on R\R.

(a)\quad \text{(a)} \> Show that the Fourier series of the function ff can be written as

f(θ)f^(0)+n1[f^(n)+f^(n)]cosnθ+i[f^(n)f^(n)]sinnθ.f(\theta) \sim \hat{f}(0) + \sum_{n \geq 1} [\hat{f}(n) + \hat{f}(-n)] \cos n \theta + i [\hat{f}(n) - \hat{f}(-n)]\sin n\theta.

(b)\quad \text{(b)} \> Prove that if ff is even, then f^(n)=f^(n)\hat{f}(n) = \hat{f}(-n), and we get a cosine series.
(c)\quad \text{(c)} \> Prove that if ff is odd, then f^(n)=f^(n)\hat{f}(n) = -\hat{f}(-n), and we get a sine series.
(d)\quad \text{(d)} \> Prove that f(θ+π)=f(θ)f(\theta + \pi) = f(\theta) for all θR\theta \in \R. Show that f^(n)=0\hat{f}(n) = 0 for all odd nn.
(e)\quad \text{(e)} \> Show that ff is real-valued if and only if f^(n)=f^(n)\overline{\hat{f}(n)} = \hat{f}(-n) for all nn.


Problems

\\

Princeton Lectures in Analysis I - Fourier Analysis: An Introduction

Chapter II - Basic Properties of Fourier Series